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Abstract. We study homogeneous real hypersurfaces having no focal submanifolds in
a complex hyperbolic space. They are called Lie hypersurfaces in this space. We clarify the
geometry of Lie hypersurfaces in terms of their sectional curvatures, the behavior of the
characteristic vector field and their holomorphic distributions.
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1. Introduction

In Riemannian submanifold theory it is one of the most interesting objects to

investigate geometric properties of homogeneous submanifolds Mn in an ambient

Riemannian manifold M̃n+p. Here, by definition a homogeneous submanifold M is

expressed as an orbit of some closed subgroup of the full isometry group of M̃ . In this

paper, we adopt Lie hypersurfaces and a complex hyperbolic space as homogeneous

submanifolds M and an ambient space M̃ , respectively.

We denote by CHn(c) a complex n (n > 2) dimensional complete and simply

connected complex hyperbolic space of constant holomorphic sectional curvature c

(c < 0). It is known that CHn(c) is a Lie group itself as well as a Riemannian

symmetric space of rank one. In fact, we can identify a hyperbolic space with the

solvable part of the Iwasawa decomposition of the identity component of the isometry

group of the hyperbolic space. A Lie hypersurface of a Lie group is defined as an
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orbit of a closed subgroup with codimension one (see [2]). A real hypersurface M

in CHn(c) is a Lie hypersurface if and only if M is homogeneous and has no focal

submanifolds in CHn(c). The family of all such hypersurfaces is parametrized by

some interval (see also [2]).

It is known that every Lie hypersurface in CHn(c) is congruent to one of the

horoshere HS, the homogeneous ruled real hypersurface HR and an equidistant hy-

persurface Mr of HR at distance r (0 < r < ∞) (cf. [2], [3]). We here remark that

lim
r→0

Mr = HR and lim
r→∞

Mr = HS, that is, the above parametrization gives a defor-

mation of the homogeneous ruled real hypersurface HR to the horosphere HS through

equidistant hypersurfaces Mr. The geometries of the horosphere HS and the homo-

geneous ruled real hypersurface HR are studied in detail (see [1], [8], [9], [11], [13]).

One can see that the former is a great contrast to the latter in some sense. For exam-

ple, HS is a Hopf hypersurface but HR is a non-Hopf hypersurface (see [14]). In this

context, we are interested in Lie hypersurfaces of CHn(c), in particular equidistant

hypersurfaces Mr of the homogeneous ruled real hypersurface HR.

Our aim of this paper is to clarify geometric properties of equidistant hypersur-

faces Mr of HR. We first estimate sectional curvatures of Mr. Needless to say, the

sectional curvature is one of the most important and simplest geometric invariants

in Riemannian geometry. Our result is an improvement of a problem that was left

open in [5]. We determine the maximum and minimum values of sectional curva-

tures of Mr completely (Theorem 1). We next study the behavior of integral curves

of the characteristic vector field of Mr. Particularly, we find an interesting rela-

tion between the shape of integral curves of the characteristic vector field and the

maximum value of sectional curvatures of Mr (Theorem 2). We also investigate the

derivative of the shape operator and the integrability of the holomorphic distribution

of Mr.

2. Basic terminology on real hypersurfaces

In this section we summarize some basic materials about real hypersurfaces

in CHn(c). Let M2n−1 be a real hypersurface with unit normal local vector field N
of a complex hyperbolic space CHn(c) (n > 2). Then it is known that an almost

contact metric structure (ϕ, ξ, η, g) on M associated with N is naturally induced

from the Kähler structure J of the ambient space CHn(c). They are defined as

ξ := −JN , η(X) := g(ξ,X) and ϕX := JX − η(X)N ,

where g denotes the Riemannian metric on M induced from the standard metric g
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of CHn(c). They satisfy the following:

ϕ2X = −X + η(X)ξ, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

η(ξ) = 1, ϕξ = 0 and η(ϕX) = 0

for all vectors X,Y ∈ TM . We call ϕ, ξ and η the structure tensor, the characteristic

vector and the contact form on M , respectively.

Denote by ∇̃ and ∇ the Riemannian connections of CHn(c) and M , respectively.

The relation between them is given by the following formulas of Gauss and Wein-

garten {
∇̃XY = ∇XY + g(AX, Y )N ,

∇̃XN = −AX

for all vector fields X and Y on M , where A is the shape operator of M in CHn(c)

associated with N . Then we have

(2.1) ∇Xξ = ϕAX

for each X ∈ TM .

Eigenvalues and eigenvectors of the shape operator A of M are called principal

curvatures and principal curvature vectors ofM in CHn(c), respectively. We usually

callM a Hopf hypersurface if the characteristic vector ξ ofM is a principal curvature

vector at each point of M .

3. Lie hypersurfaces

In this section, we prepare some fundamental facts on Lie hypersurfaces. Let Mr

be an equidistant hypersurface of the homogeneous ruled real hypersurface HR at

distance r (0 < r < ∞) in CHn(c) (n > 2). For simplicity of the notation, we put

(3.1) t := tanh

√
|c|r
2

, s := sech

√
|c|r
2

and

µ(t) :=

√
|c|
2

t(3− t2), ̺(t) :=

√
|c|
2

t3, λ(t) :=

√
|c|
2

t,(3.2)

µ(s) :=

√
|c|
2

s(3− s2), ̺(s) :=

√
|c|
2

s3, λ(s) :=

√
|c|
2

s.

We use this convention throughout the paper.
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Take a point p of Mr. Then by virtue of [2] and [5] we know that there exists

an orthonormal basis {A0, Z0, X1, Y1, . . . , Xn−1, Yn−1} of TpCH
n(c) satisfying the

following (see Section 2, 3 in [5] and Section 4 in [2]):

(1) The complex structure J of TpCH
n(c) is given by

JA0 = Z0, JZ0 = −A0, JXi = Yi, JYi = −Xi (1 6 i 6 n− 1).

(2) A unit normal vector N at p ofMr and the tangent space TpMr can be given by

N = tA0 − sX1,

TpM = SpanR{T, Z0, Y1, X2, Y2, . . . , Xn−1, Yn−1},

where

(3.3) T := sA0 + tX1.

(3) The Riemannian connection ∇ of Mr satisfies the following:

(a) ∇TT = 0, ∇TY1 = λ(t)Z0, ∇TX = 0, ∇TZ0 = −λ(t)Y1,

(b) ∇Y1
T = −λ(s)Y1 − λ(t)Z0, ∇Y1

Y1 = λ(s)T , ∇Y1
X = 0, ∇Y1

Z0 = λ(t)T,

(c) ∇XT = −λ(s)X , ∇XY1 = 0, ∇XY = 1
2

√
|c|g(JX, Y )Z0 + λ(s)g(X,Y )T,

∇XZ0 = − 1
2

√
|c|JX,

(d) ∇Z0
T = −λ(t)Y1 − 2λ(s)Z0, ∇Z0

Y1 = λ(t)T, ∇Z0
X = − 1

2

√
|c|JX,

∇Z0
Z0 = 2λ(s)T ,

where T is given in (3.3) and X,Y ∈ Span
R
{X2, Y2, . . . , Xn−1, Yn−1}.

(4) The matrix representation of the shape operator A of Mr with regard to the

normal vector N satisfies

A|Span
R
{Z0,Y1} =

(
2λ(t) −λ(s)

−λ(s) λ(t)

)
, A|v = λ(t)I2n−3,

where v := SpanR{T,X2, Y2, . . . , Xn−1, Yn−1}.
We see from the above facts that the characteristic vector of Mr is written as

(3.4) ξ = −JN = −tZ0 + sY1.

Put

(3.5) W := −JT = −ϕT = −sZ0 − tY1,

which is perpendicular to ξ. We then have the following lemma immediately.
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Lemma 1. LetMr be an equidistant hypersurface of the homogeneous ruled real

hypersurface HR at distance r (0 < r < ∞) in CHn(c) (n > 2) and p ∈ Mr.

Then there exists an orthonormal basis {ξ,W, T,X2, Y2, . . . , Xn−1, Yn−1} of TpMr

satisfying the following:

(1) ϕW = T , ϕXi = Yi, ϕYi = −Xi (2 6 i 6 n− 1).

(2) The Riemannian connection ∇ of Mr is given by

(a) ∇ξξ = ̺(s)T , ∇ξW = ̺(t)T , ∇ξT = −̺(s)ξ − ̺(t)W, ∇ξXi = λ(t)Yi,

∇ξYk = −λ(t)Yk,

(b) ∇W ξ = ̺(t)T , ∇WW = µ(s)T , ∇WT = −̺(t)ξ−µ(s)W, ∇WXi = λ(s)Yi,

∇WYk = −λ(s)Xk,

(c) ∇T ξ = −λ(t)W , ∇TW = λ(t)ξ, ∇TT = ∇TXi = ∇TYk = 0,

(d) ∇Xi
ξ = λ(t)Yi, ∇Xi

W = λ(s)Yi, ∇Xi
T = −λ(s)Xi, ∇Xi

Xj = δijλ(s)T,

∇Xi
Yk = −δik{λ(t)ξ + λ(s)W},

(e) ∇Yk
ξ = −λ(t)Xk, ∇Yk

W = −λ(s)Xk, ∇Yk
T = −λ(s)Yk, ∇Yk

Xi =

δki{λ(t)ξ + λ(s)W}, ∇Yk
Yl = δklλ(s)T .

(3) The matrix representation of the shape operator A of Mr with respect to an

orthogonal decomposition TpMr = SpanR{ξ,W} ⊕ v satisfies

A|Span
R
{ξ,W} =

(
µ(t) ̺(s)

̺(s) ̺(t)

)
, A|v = λ(t)I2n−3,

where v := SpanR{T,X2, Y2, . . . , Xn−1, Yn−1}.

4. Sectional curvatures

In this section, we study sectional curvatures of every equidistant hypersurfaceMr

at distance r (0 < r < ∞) from HR in CHn(c) (n > 2). Denoting the curvature

tensor of Mr by R, we have the equation of Gauss given by

g((R(X,Y )Z,U) =
c

4
{g(Y, Z)g(X,U)− g(X,Z)g(Y, U) + g(ϕY,Z)g(ϕX,U)

− g(ϕX,Z)g(ϕY,U)− 2g(ϕX, Y )g(ϕZ,U)}
+ g(AY,Z)g(AX,U)− g(AX,Z)g(AY,U)

for vector fields X , Y , Z, U on Mr. The sectional curvature K of Mr is defined by

K(X,Y ) := g(R(X,Y )Y,X), where X and Y are orthonormal vectors on Mr. Then

the equation of Gauss yields that

(4.1) K(X,Y ) =
c

4
(1 + 3g(ϕX, Y )2) + g(AX,X)g(AY, Y )− g(AX, Y )2.
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Theorem 1. LetMr be an equidistant hypersurface of the homogeneous ruled real

hypersurface HR at distance r (0 < r < ∞) in CHn(c) (n > 2). Set t := tanh 1
2

√
|c|r.

Then the maximum and the minimum values of its sectional curvature K are given

as follows:

maxK =





c

8

(
2− 3t2 − t

√
4− 3t2

)
(n > 3),

c

8

(
5− 3t2 −

√
−15t4 + 22t2 + 9

)
(n = 2),

(4.2)

minK =
c

8

(
5− 3t2 +

√
−15t4 + 22t2 + 9

)
(n > 2).(4.3)

P r o o f. Note thatmaxK for n > 2 and alsominK for n = 2 have been calculated

in [5]. Hence we have only to determine minK for n > 3. In the following we will

use the notation (3.2) and Lemma 1.

Let P be an arbitrary 2-plane in the tangent space TpMr at an arbitrary point

p ∈ Mr. Then there exist orthonormal vectors X , Y which are orthogonal to ξ,

such that the pair of vectors {X ′, Y }, where X ′ := (sin θ)X + (cos θ)ξ, forms an

orthonormal basis of the plane P for some θ ∈ R. Since X is orthogonal to ξ, one

has X ∈ SpanR{W} ⊕ v. Thus we can write

X = g(X,W )W + (X − g(X,W )W ), (X − g(X,W )W ) ∈ v.

We then see from Lemma 1, case (3) that

AX = g(X,W )(̺(s)ξ + ̺(t)W ) + λ(t)(X − g(X,W )W ).

We also have a similar expression of AY . By using these, one can calculate K(X ′, Y )

in terms of (4.1). For simplicity we put

(4.4) K := K(X ′, Y ), x := g(X,W ), y := g(Y,W ), z := g(ϕX, Y ).

Thus, a straightforward calculation gives

K =
|c|
4
{−1 + t2(3− t2) cos2 θ + t2 sin2 θ − t2(1− t2)x2 sin2 θ(4.5)

+ 2t(1− t2)3/2x sin θ cos θ − (1− t2)y2(t2 + cos2 θ)− 3z2 sin2 θ}.

We denote the right-hand side of (4.5) by F = F (x, y, z, t, θ). The variables satisfy

|x| 6 1, |y| 6 1, |z| 6 1, 0 < t < 1, 0 6 θ < 2π.
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Needless to say, these variables are not independent. However, we here show that

the following inequality holds, even if we think of F (x, y, z, t, θ) as a function of

independent variables x, y, z, t, θ:

(4.6) F (x, y, z, t, θ) >
c

8

(
5− 3t2 +

√
−15t4 + 22t2 + 9

)
.

First, we note that there is only one term of F containing z. Since |z| 6 1, one can

easily see

F > F |z2=1.

By a direct calculation, one has

F |z2=1 =
|c|
8
{−5− y2 − t2(−4 + x2 + y2) + t4(−1 + x2 + 2y2) +A cos 2θ+B sin 2θ},

where A = A(x, y, t) and B = B(x, y, t) are defined by

A = −{−3 + t4(1 + x2) + y2 − t2(2 + x2 + y2)}, B = 2t(1− t2)3/2x.

Putting R = R(x, y, t) =
√
A2 +B2 , we have A cos 2θ + B sin 2θ > −R. Hence one

has

F |z2=1 >
|c|
8
{−5− y2 − t2(−4 + x2 + y2) + t4(−1 + x2 + 2y2)−R}.

Let G = G(x, y, t) denote the right-hand side of this inequality again. We next

change the coordinates (x, y) to (u, α) by

x = u cosα, y = u sinα (0 6 u 6 1, 0 6 α < 2π).

Then one can express G = G(u, α, t) as

G =
|c|
16

{−10 + 8t2 − 2t4 − u2(1 − t2)(1 + 3t2) + u2(1− t4) cos 2α− 2R}

with R = R(u, α, t) =
√
A2 +B2, where

A2 =
1

4
{2(t2 − 3)(t2 + 1) + u2(t2 − 1)2 + u2(t4 − 1) cos 2α}2,

B2 = 2u2t2(1− t2)3(1 + cos 2α).

Let us set s = cos 2α afresh. Then, it satisfies |s| 6 1, and we get by differentiating

the function G = G(u, s, t) with respect to s

∂G

∂s
=

|c|
16

{
u2(1− t4)− 1

R

∂

∂s
(A2 +B2)

}
,
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where

(4.7)
∂

∂s
(A2+B2) =

1

2
(1−t2)u2{14t2+2t6+6(1−t4)+(−1+s+t2+st2)(1−t4)u2}.

In order to see ∂G/∂s 6 0, we recall that 0 < t < 1, 0 6 u 6 1, |s| 6 1. Then

u2(1 − t4) > 0 and we have ∂(A2 +B2)/∂s > 0 by substituting s = −1 in (4.7).

After a computation we obtain

{u2(1−t4)}2−
{ 1

R

∂

∂s
(A2+B2)

}2

= − 4

R2
(1−t2)4t2u4{2+6t2+(1−t4)(1−u2)} 6 0.

This implies ∂G/∂s 6 0. We hence conclude that the function G takes its minimum

with respect to s at s = 1. Applying the same procedure to G|s=1, one can find

the function G|s=1 takes its minimum with respect to u at u = 1. Thus, we obtain

F > G|s=1,u=1, hence the inequality (4.6) follows.

It remains to show that the equality of (4.6) is attained. Let us put X = W ,

Y = ϕW . Then we have x = 1, y = 0, z = 1 from (4.4), so that F becomes

F |x=1,y=0,z=1 =
|c|
8
{−5 + 3t2 +A cos 2θ +B sin 2θ},

where A = −2t4 + 3t2 + 3, B = 2t(1 − t2)3/2. Since θ is an independent variable

of X , Y , the part A cos 2θ + B sin 2θ of F |x=1,y=0,z=1 can take the value −R =

−
√
A2 +B2 = −

√
−15t4 + 22t2 + 9. This proves the relation (4.3). �

Remark 1. It is easy to see from (4.2) that the maximum values of K are

monotone increasing functions of the distance r. By an elementary computation we

observe that maxK = 0 implies

r =
1√
|c|

log
2
√
3 +

√
13−

√
73

2
√
3−

√
13−

√
73

for n = 2

and

r =
1√
|c|

log(2 +
√
3) for n > 3.

5. The integral curve of the characteristic vector field

We denote by CMn(c) a complex n-dimensional complete and simply connected

complex space form of constant holomorphic sectional curvature c, that is, CMn(c) is

a complex projective space CPn(c), a complex hyperbolic space CHn(c) or a complex

Euclidean space Cn according as c is positive, negative or zero.
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First of all, we shall review the real curve theory in CMn(c). Let γ = γ(s) be

a smooth real curve parametrized by its arclenth s in CMn(c). The curve γ is said

to be a Frenet curve of proper order d (2 6 d 6 2n) if there exist an orthonormal

system {V1 := γ̇, V2, . . . , Vd} of vector fields along γ and positive smooth functions
κ1(s), . . . , κd−1(s) satisfying:

∇̃γ̇Vj(s) = −κj−1(s)Vj−1(s) + κj(s)Vj+1(s), j = 1, . . . , d,

where κ0V0 ≡ κdVd+1 ≡ 0, and ∇̃γ̇ denotes the covariant differentiation along γ

with respect to the standard Riemannian connection ∇̃ of CMn(c). The functions

κ1, . . . , κd−1 and the orthonormal frames {V1, . . . , Vd} are called the curvatures and
the Frenet frame of the curve γ, respectively. We call a Frenet curve a helix when

all of its curvatures κ1, . . . , κd−1 are constant functions. A helix of proper order 2,

that is to say, a curve which satisfies

∇̃γ̇ γ̇ = kV2, ∇̃γ̇V2 = −kγ̇

for some positive constant k is called a circle of curvature k. We regard a geodesic

as a circle with null curvature.

For the Frenet frame {V1, . . . , Vd} of a Frenet curve γ, we set

τij(s) := g(Vi(s), JVj(s)) (1 6 i < j 6 d)

and call them the holomorphic torsions along γ. In the real curve theory in CMn(c),

the notion of holomorphic torsions plays an important role. A real curve γ in CMn(c)

is said to be homogeneous if it is an orbit of one-parameter subgroup of the full

isometry group I(CMn(c)) of CMn(c). It is known that there exit many helices

which are not homogeneous curves in a nonflat complex space form CMn(c) (c 6= 0)

(see [10]). We can give the necessary and sufficient condition for a Frenet curve to

be homogeneous in CMn(c) by using the notion of holomorphic torsions as follows:

Theorem A ([12]). A Frenet curve γ is homogeneous in a complex space

form CMn(c) if and only if it is a helix and all of its holomorphic torsions are

constant functions.

For a circle γ with positive curvature k in CMn(c), we have just one holomorphic

torsion τ12(s) = g(V1(s), JV2(s)). By easy computation one can find that the holo-

morphic torsion τ12 of the circle γ is automatically constant. Hence by Theorem A

every circle of positive curvature is homogeneous in CMn(c).

Now, we study integral curves of the characteristic vector field of Lie hypersurfaces

in a complex hyperbolic space CHn(c) (n > 2). We note that every integral curve of
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the characteristic vector of an arbitrary Hopf hypersurface M is a circle of common

curvature and of common holomorphic torsion τ12 = ±1 in CHn(c). Hence, so it

does on a horosphere HS in CHn(c). On the other hand, every integral curve of the

characteristic vector of the homogeneous ruled real hypersurface HR in CHn(c) is

a circle of common curvature 1
2

√
|c| and of common holomorphic torsion τ12 = 0

(see [1], [8]).

Theorem 2. Let Mr be an equidistant hypersurface of the homogeneous ruled

real hypersurface HR at distance r (0 < r < ∞) in CHn(c) (n > 2). Then the

integral curve γ of the characteristic vector field ξ of Mr is a homogeneous curve of

proper order 3 or 4 in the ambient space CHn(c). Moreover, for n > 3, the curve γ is

of proper order 3 if and only if the sectional curvature K of Mr satisfies maxK = 0.

P r o o f. Let ∇̃ and ∇ denote the Riemannian connections of CHn(c) and Mr,

respectively, and let N be a unit normal local vector field of Mr in CHn(c). In the

following calculation we use notation in Section 3 and Lemma 1.

Setting V1 := γ̇ = ξ, by the formula of Gauss, (2.1) and Lemma 1, case (3) we

have

(5.1) ∇̃γ̇V1 = ϕAξ + g(Aξ, ξ)N = ̺(s)T + µ(t)N .

We here put

(5.2) κ1 :=

√
̺(s)

2
+ µ(t)

2
(> 0) and V2 :=

1

κ1

(̺(s)T + µ(t)N ).

Formulas of Gauss and Weingarten and Lemma 1, the case (3) yield

(5.3) ∇̃ξT = −̺(s)ξ − ̺(t)W, ∇̃ξN = −µ(t)ξ − ̺(s)W.

By using (5.3) and the fact that µ(t) + ̺(t) = 3λ(t), we see

∇̃γ̇V2 =
1

κ1

(̺(s)∇̃ξT + µ(t)∇̃ξN ) =
1

κ1

(−(̺(s)
2
+ µ(t)

2
)ξ − ̺(s)(µ(t) + ̺(t))W )

= −κ1V1 −
3λ(t)̺(s)

κ1

W.

Set

(5.4) κ2 :=
3λ(t)̺(s)

κ1

(> 0) and V3 := −W.
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Then, we have

∇̃γ̇V3 = −̺(t)T − ̺(s)N = −κ2V2 + κ2V2 − ̺(t)T − ̺(s)N(5.5)

= −κ2V2 +
κ2

κ1

(̺(s)T + µ(t)N ) − ̺(t)T − ̺(s)N

= −κ2V2 +
(κ2

κ1

̺(s)− ̺(t)
)
T +

(κ2

κ1

µ(t)− ̺(s)
)
N .

Here, one finds from (5.4) and (5.2) that

κ2

κ1

̺(s)− ̺(t) =
3λ(t)̺(s)2

κ2
1

− ̺(t) =
1

κ2
1

((µ(t) + ̺(t))̺(s)2 − (µ(t)2 + ̺(s)2)̺(t))

= −µ(t)

κ2
1

(µ(t)̺(t) − ̺(s)
2
)

and similarly
κ2

κ1

µ(t)− ̺(s) =
̺(s)

κ2
1

(µ(t)̺(t) − ̺(s)2).

Thus, (5.5) implies

(5.6) ∇̃γ̇V3 = −κ2V2 +
1

κ2
1

(µ(t)̺(t)− ̺(s)2)(−µ(t)T + ̺(s)N ).

Definition (3.2) gives

µ(t)̺(t)− ̺(s)2 =
|c|
4

(
3 tanh2

√
|c|r
2

− 1
)
.

Set r0 :=
(
1/

√
|c|
)
log

(
2 +

√
3
)
. We here consider the following three cases:

(i) The case of 0 < r < r0. In this case, we have 0 < tanh 1
2

√
|c|r < 1/

√
3 and

µ(t)̺(t)− ̺(s)
2
< 0. Accordingly, from (5.6) we can put

κ3 : = − 1

κ2
1

(µ(t)̺(t) − ̺(s)
2
)‖ − µ(t)T + ̺(s)N‖ = −µ(t)̺(t)− ̺(s)2

κ1

,(5.7)

V4 : = − −µ(t)T + ̺(s)N
‖− µ(t)T + ̺(s)N‖ = − 1

κ1

(−µ(t)T + ̺(s)N ).

One can then see

∇̃γ̇V4 =
1

κ1

(−µ(t)̺(t) + ̺(s)2)W = −κ3V3

by use of (5.3), (5.4) and (5.7). Since all the curvatures κ1, κ2, κ3 are constant,

the curve γ in this case is a helix of proper order 4.
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(ii) The case of r = r0. In this case, we have tanh
1
2

√
|c|r = 1/

√
3 and µ(t)̺(t) −

̺(s)
2
= 0. Then, (5.6) reduces to ∇̃γ̇V3 = −κ2V2, so that the curve γ is a helix

of proper order 3.

(iii) The case of r > r0. We have µ(t)̺(t)− ̺(s)
2
> 0. Then, in the same way as in

case (i), we find κ3 = (µ(t)̺(t)−̺(s)2)/κ1, V4 = (−µ(t)T +̺(s)N )/κ1 and γ is

a helix of proper order 4.

We need to verify that all holomorphic torsions τij = g(Vi, JVj) are constant

along γ in each case. But this is clear because λ(t), µ(t), ̺(t), ̺(s) are all constant.

Therefore, by Theorems A the integral curve γ of the characteristic vector field ξ

of Mr is a homogeneous curve in CHn(c) of proper order 3 or 4.

The last assertion of Theorem 2 clearly follows from Remark 1. �

6. The shape operator and the holomorphic distribution

In this section we will investigate the length of the derivative of the shape operator

restricted to the holomorphic distribution and also investigate the integrability of

the holomorphic distribution of Lie hypersurfaces M in CHn(c). The holomorphic

distribution D
0 is defined as:

D
0 := {X ∈ TM : η(X) = 0},

where η is the contact form on M .

First of all, we recall some facts. There exist no real hypersurfaces with parallel

shape operator A in a nonflat complex space form CMn(c) (c 6= 0). Kimura and

the second author [6] introduced the notion of η-parallelism and classified Hopf hy-

persurfaces having η-parallel shape operator in a complex projective space CPn(c).

The shape operator A of M is said to be η-parallel if g((∇XA)Y, Z) = 0 for all

vectors X,Y and Z in D
0. Besides, for Hopf hypersurfaces M in a nonflat complex

space form CMn(c) (n > 2), the holomorphic distribution D0 onM is not integrable

(see [4]). It is known that the holomorphic distribution D
0 is integrable if and only

if g((ϕA + Aϕ)X,Y ) vanishes for any X,Y ∈ D
0. Motivated by these facts, we

establish the following.

Proposition 1. LetMr be an equidistant hypersurface of the homogeneous ruled

real hypersurface HR at distance r (0 < r < ∞) in CHn(c) (n > 2), and let

{e1, . . . , e2n−2} be an orthonormal basis of the holomorphic distribution D
0 of Mr.

Denote by A the shape operator of Mr in CHn(c). Then we have the following.
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(1) Set

‖∇0A‖ :=

√∑

i,j,k

g((∇eiA)ej , ek)
2.

Then

(6.1) ‖∇0A‖ =

√
3|c|
2

sech3
√
|c|r
2

tanh

√
|c|r
2

,

which takes its maximum value when r = (log 3)/
√
|c|. Moreover, we have

‖∇0A‖ > 0 and lim
r→0

‖∇0A‖ = lim
r→∞

‖∇0A‖ = 0, so that both the horosphere HS

and the homogeneous ruled real hypersurface HR are η-parallel, but it is not so

for Mr.

(2) Set

‖Ψ0‖ :=

√∑

i,j

g((ϕA+Aϕ)ei, ej)2 .

Then

(6.2) ‖Ψ0‖ =

√
|c|
2

tanh

√
|c|r
2

√
(
tanh2

√
|c|r
2

+ 1
)2

+ 4(n− 2),

which is a monotone increasing function of the distance r from HR. Further-

more, we have lim
r→0

‖Ψ0‖ = 0, so that the holomorphic distribution D
0 of the

homogeneous ruled real hypersurface HR is integrable, but it is not so for the

other Lie hypersurfaces in CHn(c).

P r o o f. We employ {W,T,X2, Y2, . . . , Xn−1, Yn−1}, which is given in Lemma 1,
as an orthonormal basis of D0. Then we obtain (6.1) and (6.2) by straightforward

calculations. Let us set t := tanh 1
2

√
|c|r. Then it satisfies 0 < t < 1, and one can

write (6.1) as

‖∇0A‖ =

√
3|c|
2

t
√
(1− t2)3.

Denoting the right-hand side of this relation by f = f(t), we get

df

dt
=

√
3|c|
2

(1− 4t2)
√

1− t2.

Equation 1 − 4t2 = 0 implies r = (log 3)/
√
|c|. This proves the case (1) of our

proposition. The rest is easy. �

Remark 2. Kon and Loo obtained the complete classification of η-parallel real

hypersurfaces in a nonflat complex space form CMn(c) for n > 3. See [7].

995



Acknowledgement. The authors are grateful to the referee for valuable sugges-

tions.

References

[1] T.Adachi, T.Bao, S.Maeda: Congruence classes of minimal ruled real hypersurfaces in
a nonflat complex space form. Hokkaido Math. J. 43 (2014), 137–150. zbl MR doi

[2] J.Berndt: Homogeneous hypersurfaces in hyperbolic spaces. Math. Z. 229 (1998),
589–600. zbl MR doi

[3] J.Berndt, H.Tamaru: Cohomogeneity one actions on noncompact symmetric spaces of
rank one. Trans. Am. Math. Soc. 359 (2007), 3425–3438. zbl MR doi

[4] B.-Y.Chen, S.Maeda: Hopf hypersurfaces with constant principal curvatures in complex
projective or complex hyperbolic spaces. Tokyo J. Math. 24 (2001), 133–152. zbl MR doi

[5] T.Hamada, Y.Hoshikawa, H. Tamaru: Curvatures properties of Lie hypersurfaces in
the complex hyperbolic space. J. Geom. 103 (2012), 247–261. zbl MR doi

[6] M.Kimura, S.Maeda: On real hypersurfaces of a complex projective space. Math. Z.
202 (1989), 299–311. zbl MR doi

[7] S.H.Kon, T.-H. Loo: Real hypersurfaces in a complex space form with η-parallel shape
operator. Math. Z. 269 (2011), 47–58. zbl MR doi

[8] M.Lohnherr, H. Reckziegel: On ruled real hypersurfaces in complex space forms. Geom.
Dedicata 74 (1999), 267–286. zbl MR doi

[9] S.Maeda: Geometry of the horosphere in a complex hyperbolic space. Differ. Geom.
Appl. 29 (2011), s246–s250. zbl MR doi

[10] S.Maeda, T.Adachi: Holomorphic helices in a complex space form. Proc. Am. Math.
Soc. 125 (1997), 1197–1202. zbl MR doi

[11] S.Maeda, T.Adachi, Y.H.Kim: A characterization of the homogeneous minimal ruled
real hypersurface in a complex hyperbolic space. J. Math. Soc. Japan 61 (2009), 315–325. zbl MR doi

[12] S.Maeda, Y.Ohnita: Helical geodesic immersions into complex space forms. Geom. Ded-
icata 30 (1989), 93–114. zbl MR doi

[13] S.Maeda, H. Tanabe: A characterization of the homogeneous ruled real hypersurface in
a complex hyperbolic space in terms of the first curvature of some integral curves. Arch.
Math. 105 (2015), 593–599. zbl MR doi

[14] R.Niebergall, P. J. Ryan: Real hypersurfaces in complex space forms. Tight and Taut
Submanifolds. Based on the Workshop on Differential Systems, Submanifolds and Con-
trol Theory, Berkeley, CA, USA, 1994. Math. Sci. Res. Inst. Publ. 32, Cambridge Uni-
versity Press, Cambridge, 1997, pp. 233–305. zbl MR

Authors’ addresses: Yo u n g H o K im, Department of Mathematics, Kyungpook Na-
tional University, 80 Daehakro, Bukgu, Daegu, 41566, Korea, e-mail: yhkim@knu.ac.kr,
S a d a h i r o Ma e d a, Department of Mathematics, Saga University, 1 Honjo-machi, Saga,
840-8502, Japan, e-mail: sadahiromaeda0801@gmail.com, H i r om a s a Ta n a b e, Depart-
ment of Science, National Institute of Technology, Matsue College, 14-4 Nishiikumacho,
Matsue, Shimane 690-8518, Japan, e-mail: h-tanabe@matsue-ct.jp.

996

https://zbmath.org/?q=an:1288.53045
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3178483
http://dx.doi.org/10.14492/hokmj/1392906097
https://zbmath.org/?q=an:0929.53025
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1664778
http://dx.doi.org/10.1007/PL00004673
https://zbmath.org/?q=an:1117.53041
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2299462
http://dx.doi.org/10.1090/S0002-9947-07-04305-X
https://zbmath.org/?q=an:1015.53039
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1844424
http://dx.doi.org/10.3836/tjm/1255958318
https://zbmath.org/?q=an:1266.53057
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2995128
http://dx.doi.org/10.1007/s00022-012-0127-1
https://zbmath.org/?q=an:0661.53015
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1017573
http://dx.doi.org/10.1007/BF01159962
https://zbmath.org/?q=an:1227.53071
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2836059
http://dx.doi.org/10.1007/s00209-010-0715-4
https://zbmath.org/?q=an:0932.53018
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1669351
http://dx.doi.org/10.1023/A:1005000122427
https://zbmath.org/?q=an:1225.53056
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2832025
http://dx.doi.org/10.1016/j.difgeo.2011.04.048
https://zbmath.org/?q=an:0876.53045
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1353391
http://dx.doi.org/10.1090/S0002-9939-97-03627-7
https://zbmath.org/?q=an:1159.53012
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2272881
http://dx.doi.org/10.2969/jmsj/06110315
https://zbmath.org/?q=an:0669.53042
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0995941
http://dx.doi.org/10.1007/BF02424315
https://zbmath.org/?q=an:1329.53032
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3422863
http://dx.doi.org/10.1007/s00013-015-0839-1
https://zbmath.org/?q=an:0904.53005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1486875

		webmaster@dml.cz
	2020-07-03T23:43:03+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




