Previous |  Up |  Next

Article

Keywords:
pseudo-Riemannian manifold; pseudo-Riemannian weakly symmetric manifold; pseudo-Riemannian weakly symmetric Lie algebra; Lorentzian weakly symmetric manifold
Summary:
We give a classification of pseudo-Riemannian weakly symmetric manifolds in dimensions $2$ and $3$, based on the algebraic approach of such spaces through the notion of a pseudo-Riemannian weakly symmetric Lie algebra. We also study the general symmetry of reductive $3$-dimensional pseudo-Riemannian weakly symmetric spaces and particularly prove that a $3$-dimensional reductive $2$-fold symmetric pseudo-Riemannian manifold must be globally symmetric.
References:
[1] Berndt, J., Vanhecke, L.: Geometry of weakly symmetric spaces. J. Math. Soc. Japan 48 (1996), 745-760. DOI 10.2969/jmsj/04840745 | MR 1404821 | Zbl 0877.53027
[2] Chen, Z., Wolf, J. A.: Pseudo-Riemannian weakly symmetric manifolds. Ann. Global Anal. Geom. 41 (2012), 381-390. DOI 10.1007/s10455-011-9291-z | MR 2886205 | Zbl 1237.53071
[3] Barco, V. del, Ovando, G. P.: Isometric actions on pseudo-Riemannian nilmanifolds. Ann. Global Anal. Geom. 45 (2014), 95-110. DOI 10.1007/s10455-013-9389-6 | MR 3165476 | Zbl 1295.53081
[4] Deng, S.: An algebraic approach to weakly symmetric Finsler spaces. Can. J. Math. 62 (2010), 52-73. DOI 10.4153/CJM-2010-004-x | MR 2597023 | Zbl 1205.53078
[5] Deng, S.: On the symmetry of Riemannian manifolds. J. Reine Angew. Math. 680 (2013), 235-256. DOI 10.1515/crelle.2012.040 | MR 3100956 | Zbl 1273.53047
[6] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Pure and Applied Mathematics 80, Academic Press, New York (1978). MR 0514561 | Zbl 0451.53038
[7] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vol. I. Interscience Publishers, John Wiley & Sons, New York (1963). MR 0152974 | Zbl 0119.37502
[8] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc., New Ser. 20 (1956), 47-87. MR 0088511 | Zbl 0072.08201
[9] Wang, H.-C.: Two-point homogeneous spaces. Ann. Math. 55 (1952), 177-191. DOI 10.2307/1969427 | MR 0047345 | Zbl 0048.40503
[10] Wolf, J. A.: Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs 142, American Mathematical Society, Providence (2007). DOI 10.1090/surv/142 | MR 2328043 | Zbl 1156.22010
[11] Yakimova, O. S.: Weakly symmetric Riemannian manifolds with a reductive isometry group. Sb. Math. 195 (2004), 599-614 English. Russian original translation from Mat. Sb. 195 2004 143-160. DOI 10.1070/SM2004v195n04ABEH000817 | MR 2086668 | Zbl 1078.53043
[12] Ziller, W.: Weakly symmetric spaces. Topics in Geometry. In Memory of Joseph D'Atri Progr. Nonlinear Differ. Equ. Appl. 20, Birkhäuser, Boston Gindikin, S. et al. (1996), 355-368. DOI 10.1007/978-1-4612-2432-7 | MR 1390324 | Zbl 0860.53030
Partner of
EuDML logo