Keywords: Bloch type space; Lipschitz space; Hardy-Littlewood theorem; Hilbert space
Summary: We initiate the study of Bloch type spaces on the unit ball of a Hilbert space. As applications, the Hardy-Littlewood theorem in infinite-dimensional Hilbert spaces and characterizations of some holomorphic function spaces related to the Bloch type space are presented.
[1] Blasco, O., Galindo, P., Miralles, A.: Bloch functions on the unit ball of an infinite dimensional Hilbert space. J. Funct. Anal. 267 (2014), 1188-1204. DOI 10.1016/j.jfa.2014.04.018 | MR 3217061 | Zbl 1293.32010
[4] Dai, J., Wang, B.: Characterizations of some function spaces associated with Bloch type spaces on the unit ball of $\mathbb{C}^{n}$. J. Inequal. Appl. 2015 (2015), 10 pages. DOI 10.1186/s13660-015-0846-6 | MR 3411320 | Zbl 1336.32006
[6] Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Monographs and Textbooks in Pure and Applied Mathematics 255, Marcel Dekker, New York (2003). DOI 10.1201/9780203911624 | MR 2017933 | Zbl 1042.30001
[7] Hahn, K. T.: Holomorphic mappings of the hyperbolic space into the complex Euclidean space and the Bloch theorem. Canad. J. Math 27 (1975), 446-458. DOI 10.4153/CJM-1975-053-0 | MR 0466641 | Zbl 0269.32014
[21] Yang, W., Ouyang, C.: Exact location of $\alpha$-Bloch spaces in $L^{p}_{a}$ and $H^{p}$ of a complex unit ball. Rocky Mountain J. Math. 30 (2000), 1151-1169. DOI 10.1216/rmjm/1021477265 | MR 1797836 | Zbl 0978.32002