Previous |  Up |  Next

Article

Keywords:
Urysohn space; $\theta $-closure; pseudocharacter; almost Lindelöf degree; cardinality; cardinal invariant
Summary:
We introduce the cardinal invariant $\theta $-$aL'(X)$, related to $\theta $-$aL(X)$, and show that if $X$ is Urysohn, then $|X|\leq 2^{\theta \text {-}aL'(X)\chi (X)}$. As $\theta $-$aL'(X)\leq aL(X)$, this represents an improvement of the Bella-Cammaroto inequality. \endgraf We also introduce the classes of firmly Urysohn spaces, related to Urysohn spaces, strongly semiregular spaces, related to semiregular spaces, and weakly $H$-closed spaces, related to $H$-closed spaces.
References:
[1] Alas, O. T., Kočinac, L. D.: More cardinal inequalities on Urysohn spaces. Math. Balk., New Ser. 14 (2000), 247-251. MR 1891143 | Zbl 1043.54500
[2] Basile, F. A., Bonanzinga, M., Carlson, N.: Variations on known and recent cardinality bounds. Topology Appl. 240 (2018), 228-237. DOI 10.1016/j.topol.2018.03.005 | MR 3784407 | Zbl 1388.54004
[3] Bell, M., Ginsburg, J., Woods, G.: Cardinal inequalities for topological spaces involving the weak Lindelöf number. Pac. J. Math. 79 (1979), 37-45. DOI 10.2140/pjm.1978.79.37 | MR 0526665 | Zbl 0367.54003
[4] Bella, A., Cammaroto, F.: On the cardinality of Urysohn spaces. Can. Math. Bull. 31 (1988), 153-158. DOI 10.4153/CMB-1988-023-4 | MR 0942065 | Zbl 0646.54005
[5] Cammaroto, F., Catalioto, A., Pansera, B. A., Tsaban, B.: On the cardinality of the $\theta$-closed hull of sets. Topology Appl. 160 (2013), 2371-2378. DOI 10.1016/j.topol.2013.07.031 | MR 3120651 | Zbl 1284.54011
[6] Cammaroto, F., Kočinac, L.: On $\theta$-tightness. Facta Univ., Ser. Math. Inf. 8 (1993), 77-85. MR 1340985 | Zbl 0823.54002
[7] Carlson, N. A., Porter, J. R.: On the cardinality of Hausdorff spaces and $H$-closed spaces. Topology Appl. 241 (2018), 377-395. DOI 10.1016/j.topol.2017.01.027 | MR 3794175 | Zbl 06894012
[8] Engelking, R.: General Topology. Wydawnictwo Naukowe PWN, Warsaw Polish (2007). MR 0500779 | Zbl 1281.54001
[9] Hodel, R. E.: Arhangel'ski{\uı's solution to Alexandroff's problem: a survey. Topology Appl. 153 (2006), 2199-2217. DOI 10.1016/j.topol.2005.04.011 | MR 2238725 | Zbl 1099.54001
[10] Kočinac, L. D.: On the cardinality of Urysohn and $H$-closed spaces. Proc. Math. Conf., Priština, 1994 Univ. of Priština, Faculty of Sciences, Priština (1995), L. D. Kočinac 105-111. MR 1466279 | Zbl 0877.54002
[11] Kočinac, L. D.: On the cardinality of Urysohn spaces. Questions and Answers in General Topology 13 (1995), 211-216. MR 1350238 | Zbl 0838.54002
[12] Porter, J. R., Woods, R. G.: Extensions and Absolutes of Hausdorff Spaces. Springer, New York (1988). DOI 10.1007/978-1-4612-3712-9 | MR 0918341 | Zbl 0652.54016
[13] Veličko, N. V.: $H$-closed topological spaces. Am. Math. Soc., Transl., II. Ser. 78 (1968), 103-118 translated from Mat. Sb., n. Ser. 70 1966 98-112. DOI 10.1090/trans2/078/05 | MR 0198418 | Zbl 0183.27302
[14] Willard, S., Dissanayake, U. N. B.: The almost Lindelöf degree. Can. Math. Bull. 27 (1984), 452-455. DOI 10.4153/CMB-1984-070-2 | MR 0763044 | Zbl 0551.54003
Partner of
EuDML logo