Previous |  Up |  Next

Article

Keywords:
exponential Diophantine equation; sieving; modular computations
Summary:
The triples $(x,y,z)=(1,z^z-1,z)$, $(x,y,z)=(z^z-1,1,z)$, where $z\in \Bbb N$, satisfy the equation $x^y+y^x=z^z$. In this paper it is shown that the same equation has no integer solution with $\min \{x,y,z\} > 1$, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.
References:
[1] Bugeaud, Y.: Linear forms in $p$-adic logarithms and the Diophantine equation $(x^n-1)/(x-1)=y^q$. Math. Proc. Camb. Philos. Soc. 127 (1999), 373-381. DOI 10.1017/S0305004199003692 | MR 1713116 | Zbl 0940.11019
[2] Deng, Y., Zhang, W.: On the odd prime solutions of the Diophantine equation $x^y+y^x=z^z$. Abstr. Appl. Anal. 2014 (2014), Article ID 186416, 4 pages. DOI 10.1155/2014/186416 | MR 3240527
[3] Du, X.: On the exponential Diophantine equation $x^y+y^x=z^z$. Czech. Math. J. 67 (2017), 645-653. DOI 10.21136/CMJ.2017.0645-15 | MR 3697908 | Zbl 06770122
[4] Mollin, R. A., Williams, H. C.: Computation of the class number of a real quadratic field. Util. Math. 41 (1992), 259-308. MR 1162532 | Zbl 0757.11036
[5] The PARI-Group: PARI/GP version 2.3.5. Univ. Bordeaux (2010), Available at http://pari.math.u-bordeaux.fr/download.html\kern0pt
[6] Poorten, A. J. van der, Riele, H. J. J. te, Williams, H. C.: Computer verification of the Ankeny-Artin-Chowla Conjecture for all primes less than 100000000000. Math. Comput. 70 (2001), 1311-1328 corrigenda and addition ibid. 72 521-523 2003. DOI 10.1090/S0025-5718-00-01234-5 | MR 1933835 | Zbl 0987.11065
[7] Wu, H. M.: The application of the BHV theorem to the Diophantine equation $x^y+y^x=z^z$. Acta Math. Sin., Chin. Ser. 58 (2015), Chinese 679-684. MR 3443204 | Zbl 1349.11077
[8] Zhang, Z., Luo, J., Yuan, P.: On the Diophantine equation $x^y-y^x=z^z$. Chin. Ann. Math., Ser. A 34 (2013), 279-284 Chinese. MR 3114411 | Zbl 1299.11037
Partner of
EuDML logo