Article
Keywords:
exponential Diophantine equation; sieving; modular computations
Summary:
The triples $(x,y,z)=(1,z^z-1,z)$, $(x,y,z)=(z^z-1,1,z)$, where $z\in \Bbb N$, satisfy the equation $x^y+y^x=z^z$. In this paper it is shown that the same equation has no integer solution with $\min \{x,y,z\} > 1$, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.
References:
[2] Deng, Y., Zhang, W.:
On the odd prime solutions of the Diophantine equation $x^y+y^x=z^z$. Abstr. Appl. Anal. 2014 (2014), Article ID 186416, 4 pages.
DOI 10.1155/2014/186416 |
MR 3240527
[4] Mollin, R. A., Williams, H. C.:
Computation of the class number of a real quadratic field. Util. Math. 41 (1992), 259-308.
MR 1162532 |
Zbl 0757.11036
[6] Poorten, A. J. van der, Riele, H. J. J. te, Williams, H. C.:
Computer verification of the Ankeny-Artin-Chowla Conjecture for all primes less than 100000000000. Math. Comput. 70 (2001), 1311-1328 corrigenda and addition ibid. 72 521-523 2003.
DOI 10.1090/S0025-5718-00-01234-5 |
MR 1933835 |
Zbl 0987.11065
[7] Wu, H. M.:
The application of the BHV theorem to the Diophantine equation $x^y+y^x=z^z$. Acta Math. Sin., Chin. Ser. 58 (2015), Chinese 679-684.
MR 3443204 |
Zbl 1349.11077
[8] Zhang, Z., Luo, J., Yuan, P.:
On the Diophantine equation $x^y-y^x=z^z$. Chin. Ann. Math., Ser. A 34 (2013), 279-284 Chinese.
MR 3114411 |
Zbl 1299.11037