[3] Bray, J. N., Holt, D. F., Roney-Dougal, C. M.:
The Maximal Subgroups of the Low-Dimensional Finite Classical Groups. London Mathematical Society Lecture Note Series 407, Cambridge University Press, Cambridge (2013).
DOI 10.1017/CBO9781139192576 |
MR 3098485 |
Zbl 1303.20053
[15] Huppert, B., Lempken, W.:
Simple groups of order divisible by at most four primes. Izv. Gomel. Gos. Univ. Im. F. Skoriny 16 (2000), 64-75.
Zbl 1159.20303
[16] Kutnar, K., Marušič, D., Šparl, P., Wang, R. J., Xu, M. Y.:
Classification of half-arc-transitive graphs of order $4p$. Eur. J. Comb. 34 (2013), 1158-1176.
DOI 10.1016/j.ejc.2013.04.004 |
MR 3055230 |
Zbl 1292.05134
[23] Suzuki, M.:
Group Theory II. Grundlehren der mathematischen Wissenschaften 248, Springer, New York (1986).
MR 0815926 |
Zbl 0586.20001
[25] Tutte, W. T.:
Connectivity in Graphs. Mathematical Expositions 15, University of Toronto Press, Toronto; Oxford University Press, London (1966).
MR 0210617 |
Zbl 0146.45603
[30] Wang, X., Feng, Y., Zhou, J., Wang, J., Ma, Q.:
Tetravalent half-arc-transitive graphs of order a product of three primes. Discrete Math. 339 (2016), 1566-1573.
DOI 10.1016/j.disc.2015.12.022 |
MR 3475570 |
Zbl 1333.05144
[31] Wilson, S., Potočnik, P.:
A census of edge-transitive tetravalent graphs, Mini-Census. Available at
https://www.fmf.uni-lj.si/ {potocnik/work.htm}.