Previous |  Up |  Next

Article

Keywords:
probabilistic communication situation; fuzzy coalition; average tree solution; maximal product spanning tree
Summary:
A probabilistic communication structure considers the setting with communication restrictions in which each pair of players has a probability to communicate directly. In this paper, we consider a more general framework, called a probabilistic communication structure with fuzzy coalition, that allows any player to have a participation degree to cooperate within a coalition. A maximal product spanning tree, indicating a way of the greatest possibility to communicate among the players, is introduced where the unique path from one player to another is optimal. We present a feasible procedure to find the maximal product spanning trees. Furthermore, for games under this model, a new solution concept in terms of the average tree solution is proposed and axiomatized by defining a restricted game in Choquet integral form.
References:
[1] Aubin, J. P.: Coeur et valeur des jeux flous à paiements latéraux. Comptes Rendus Hebdomadaires des Séances de 1'Académie des Sciences 279-A (1974), 891-894. MR 0368799 | Zbl 0297.90128
[2] Bhutani, K. R., Rosenfeld, A.: Strong arcs in fuzzy graphs. Inform. Sci. 152 (2003), 319-322. DOI 10.1016/s0020-0255(02)00411-5 | MR 1981135
[3] Borm, P., Owen, G., Tijs, S.: On the position value for communication situations. SIAM J. Discrete Math. 5 (1992), 305-320. DOI 10.1137/0405023 | MR 1172740
[4] Butnariu, D.: Stability and Shapley value for an n-persons fuzzy game. Fuzzy Sets and Systems 4 (1980), 63-72. DOI 10.1016/0165-0114(80)90064-0 | MR 0580834
[5] Calvo, E., Lasaga, J., Nouweland, A. van den: Values of games with probabilistic graphs. Math. Social Sci. 37 (1999), 79-95. DOI 10.1016/s0165-4896(98)00013-4 | MR 1662494
[6] Gallardo, J. M., Jiménez, N., Jiménez-Losada, A., Lebrón, E.: Games with fuzzy authorization structure: A Shapley value. Fuzzy Sets and Systems 272 (2015), 115-125. DOI 10.1016/j.fss.2014.09.002 | MR 3339103
[7] Gómez, D., González-Arangüena, E., Manuel, C., Owen, G.: A value for generalized probabilistic communication situations. Europ. J. Oper. Res. 190 (2008), 539-556. DOI 10.1016/j.ejor.2007.06.040 | MR 2412989
[8] Herings, P. J. J., Laan, G. van der, Talman, D.: The average tree solution for cycle-free graph games. Games and Economic Behavior 62 (2008), 77-92. DOI 10.1016/j.geb.2007.03.007 | MR 2384857
[9] Jiménez-Losada, A., Fernández, J. R., Ordóñez, M., Grabisch, M.: Games on fuzzy communication structures with Choquet players. Europ. J. Oper. Res. 207 (2010), 836-847. DOI 10.1016/j.ejor.2010.06.014 | MR 2670614
[10] Li, X., Sun, H., Hou, D: On the position value for communication situations with fuzzy coalition. J. Intell. Fuzzy Systems 33 (2017), 113-124. DOI 10.3233/jifs-16117
[11] Myerson, R. B.: Graphs and cooperation in games. Mathematics of Operations Research 2 (1977), 225-229. DOI 10.1287/moor.2.3.225 | MR 0459661
[12] Tsurumi, M., Tanino, T., Inuiguchi, M.: A Shapley function on a class of cooperative fuzzy games. Europ. J. Oper. Res. 129 (2001), 596-618. DOI 10.1016/s0377-2217(99)00471-3 | MR 1807816
[13] Yu, X., Zhang, Q.: The fuzzy core in games with fuzzy coalitions. J. Computat. Appl. Math. 230 (2009), 173-186. DOI 10.1016/j.cam.2008.11.004 | MR 2532301
[14] Xu, G., Li, X., Sun, H., Su, J.: The Myerson value for cooperative games on communication structure with fuzzy coalition. J. Intell. Fuzzy Systems 33 (2017), 27-39. DOI 10.3233/jifs-16080
Partner of
EuDML logo