Previous |  Up |  Next

Article

Keywords:
McShane integral; weak McShane integral; multiplier
Summary:
The multiplier for the weak McShane integral which has been introduced by M. Saadoune and R. Sayyad (2014) is characterized.
References:
[1] Piazza, L. Di, Marraffa, V.: An equivalent definition of the vector-valued McShane integral by means of partitions of unity. Stud. Math. 151 (2002), 175-185. DOI 10.4064/sm151-2-5 | MR 1917952 | Zbl 1005.28009
[2] Dunford, N., Pettis, B. J.: Linear operations on summable functions. Trans. Am. Math. Soc. 47 (1940), 323-392. DOI 10.2307/1989960 | MR 0002020 | Zbl 0023.32902
[3] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. DOI 10.1215/ijm/1255986628 | MR 1299648 | Zbl 0810.28006
[4] Fremlin, D. H.: Measure Theory. Vol. 2. Broad Foundations. Torres Fremlin, Colchester (2003). MR 2462280 | Zbl 1165.28001
[5] Fremlin, D. H.: Measure Theory. Vol. 4. Topological Measure Spaces. Part I, II. Torres Fremlin, Colchester (2006). MR 2462372 | Zbl 1166.28001
[6] Geitz, R. F.: Pettis integration. Proc. Am. Math. Soc. 82 (1981), 81-86. DOI 10.2307/2044321 | MR 0603606 | Zbl 0506.28007
[7] Hewitt, E., Stromberg, K.: Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable. Graduate Texts in Mathematics 25. Springer, New York (1965). DOI 10.1007/978-3-642-88047-6 | MR 0188387 | Zbl 0137.03202
[8] Musiał, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. MR 0922998 | Zbl 0636.28005
[9] Saadoune, M., Sayyad, R.: The weak McShane integral. Czech. Math. J. 64 (2014), 387-418. DOI 10.1007/s10587-014-0108-7 | MR 3277743 | Zbl 1340.28016
[10] Sayyad, R.: The McShane integral in the limit. Real Anal. Exch. 42 (2017), 283-310. DOI 10.14321/realanalexch.42.2.0283 | MR 3721803
Partner of
EuDML logo