Previous |  Up |  Next

Article

Keywords:
Banach algebra; $(\varphi ,\psi )$-derivation; group algebra; locally compact group; measure algebra; Segal algebra; weak amenability
Summary:
The generalized notion of weak amenability, namely $(\varphi ,\psi )$-weak amenability, where $\varphi ,\psi $ are continuous homomorphisms on a Banach algebra ${\mathcal A}$, was introduced by Bodaghi, Eshaghi Gordji and Medghalchi (2009). In this paper, the $(\varphi ,\psi )$-weak amenability on the measure algebra $M(G)$, the group algebra $L^1(G)$ and the Segal algebra $S^1(G)$, where $G$ is a locally compact group, are studied. As a typical example, the $(\varphi ,\psi )$-weak amenability of a special semigroup algebra is shown as well.
References:
[1] Bade, W. G., Jr., P. C. Curtis, Dales, H. G.: Amenability and weak amenability for Beurling and Lipschitz algebras. Proc. Lond. Math. Soc., III. Ser. 55 (1987), 359-377. DOI 10.1093/plms/s3-55_2.359 | MR 0896225 | Zbl 0634.46042
[2] Bodaghi, A.: Module $(\varphi,\psi)$-amenability of Banach algeras. Arch. Math., Brno 46 (2010), 227-235. MR 2754062 | Zbl 1240.43001
[3] Bodaghi, A.: Generalized notion of weak module amenability. Hacet. J. Math. Stat. 43 (2014), 85-95. MR 3185637 | Zbl 1327.46047
[4] Bodaghi, A., Gordji, M. Eshaghi, Medghalchi, A. R.: A generalization of the weak amenability of Banach algebras. Banach J. Math. Anal. 3 (2009), 131-142. DOI 10.15352/bjma/1240336430 | MR 2461753 | Zbl 1163.46034
[5] Bodaghi, A., Shojaee, B.: A generalized notion of $n$-weak amenability. Math. Bohemica 139 (2014), 99-112. MR 3231432 | Zbl 1340.46040
[6] Dales, H. G., Ghahramani, F., Helemskii, A. Ya.: The amenability of measure algebras. J. Lond. Math. Soc., II. Ser. 66 (2002), 213-226. DOI 10.1112/S0024610702003381 | MR 1911870 | Zbl 1015.43002
[7] Dales, H. G., Pandey, S. S.: Weak amenability of Segal algebras. Proc. Am. Math. Soc. 128 (2000), 1419-1425. DOI 10.1090/S0002-9939-99-05139-4 | MR 1641681 | Zbl 0952.43003
[8] Despić, M., Ghahramani,, F.: Weak amenability of group algebras of locally compact groups. Can. Math. Bull. 37 (1994), 165-167. DOI 10.4153/CMB-1994-024-4 | MR 1275699 | Zbl 0813.43001
[9] Ghahramani, F., Lau, A. T. M.: Weak amenability of certain classes of Banach algebras without bounded approximate identities. Math. Proc. Camb. Philos. Soc. 133 (2002), 357-371. DOI 10.1017/S0305004102005960 | MR 1912407 | Zbl 1010.46048
[10] Grønbæk, N.: A characterization of weakly amenable Banach algebras. Studia Math. 94 (1989), 149-162. DOI 10.4064/sm-94-2-149-162 | MR 1025743 | Zbl 0704.46030
[11] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Vol. 1: Structure of Topological Groups; Integration Theory; Group Representations. Grundlehren der mathematischen Wissenschaften 115. A Series of Comprehensive Studies in Mathematics. Springer, Berlin (1979). DOI 10.1007/978-1-4419-8638-2 | MR 0551496 | Zbl 0416.43001
[12] Johnson, B. E.: Cohomology in Banach Algebras. Mem. Am. Math. Soc. 127. AMS, Providence (1972). MR 0374934 | Zbl 0256.18014
[13] Johnson, B. E.: Weak amenability of group algebras. Bull. Lond. Math. Soc. 23 (1991), 281-284. DOI 10.1112/blms/23.3.281 | MR 1123339 | Zbl 0757.43002
[14] Lau, A. T. M., Loy, R. J.: Weak amenability of Banach algebras on locally compact groups. J. Funct. Anal. 145 (1997), 175-204. DOI 10.1006/jfan.1996.3002 | MR 1442165 | Zbl 0890.46036
[15] Moslehian, M. S., Motlagh, A. N.: Some notes on $(\sigma,\tau)$-amenability of Banach algebras. Stud. Univ. Babeş-Bolyai, Math. 53 (2008), 57-68. MR 2487108 | Zbl 1199.46111
[16] Reiter, H., Stegeman, J. D.: Classical Harmonic Analysis and Locally Compact Groups. London Mathematical Society Monographs. New Series 22. Clarendon Press, Oxford (2000). MR 1802924 | Zbl 0965.43001
[17] Zhang, Y.: Weak amenability of a class of Banach algebras. Can. Math. Bull. 44 (2001), 504-508. DOI 10.4153/CMB-2001-050-7 | MR 1863642 | Zbl 1156.46306
Partner of
EuDML logo