Previous |  Up |  Next

Article

Keywords:
local cohomology; ${\rm FD}_{\leq n}$ modules; cofinite modules; cominimax modules
Summary:
Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$. Let $t\in \mathbb {N}_0$ be an integer and $M$ an $R$-module such that ${\rm Ext}^i_R(R/I,M)$ is minimax for all $i\leq t+1$. We prove that if $H^{i}_{I}(M)$ is ${\rm FD}_{\leq 1}$ (or weakly Laskerian) for all $i<t$, then the $R$-modules $H^{i}_{I}(M)$ are $I$-cominimax for all $i<t$ and ${\rm Ext}^i_R(R/I,H^{t}_{I}(M))$ is minimax for $i=0,1$. Let $N$ be a finitely generated $R$-module. We prove that ${\rm Ext}^j_R(N,H^{i}_{I}(M))$ and ${\rm Tor}^R_{j}(N,H^{i}_I(M))$ are $I$-cominimax for all $i$ and $j$ whenever $M$ is minimax and $H^{i}_{I}(M)$ is ${\rm FD}_{\leq 1}$ (or weakly Laskerian) for all $i$.
References:
[1] Abbasi, A., Roshan-Shekalgourabi, H., Hassanzadeh-Lelekaami, D.: Some results on the local cohomology of minimax modules. Czech. Math. J. 64 (2014), 327-333. DOI 10.1007/s10587-014-0104-y | MR MR3277739 | Zbl 1340.13009
[2] Aghapournahr, M., Bahmanpour, K.: Cofiniteness of weakly Laskerian local cohomology modules. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 57(105) (2014), 347-356. MR 3288929 | Zbl 1340.13010
[3] Asadollahi, J., Khashyarmanesh, K., Salarian, S.: A generalization of the cofiniteness problem in local cohomology modules. J. Aust. Math. Soc. 75 (2003), 313-324. DOI 10.1017/S1446788700008132 | MR 2015320 | Zbl 1096.13522
[4] Azami, J., Naghipour, R., Vakili, B.: Finiteness properties of local cohomology modules for $\frak a$-minimax modules. Proc. Amer. Math. Soc. 137 (2009), 439-448. DOI 10.1090/S0002-9939-08-09530-0 | MR 2448562 | Zbl 1157.13014
[5] Bahmanpour, K.: On the category of weakly Laskerian cofinite modules. Math. Scand. 115 (2014), 62-68. DOI 10.7146/math.scand.a-18002 | MR 3250048 | Zbl 1306.13010
[6] Bahmanpour, K.: Cohomological dimension, cofiniteness and Abelian categories of cofinite modules. J. Algebra 484 (2017), 168-197. DOI 10.1016/j.jalgebra.2017.04.019 | MR 3656717 | Zbl 06732231
[7] Bahmanpour, K., Naghipour, R.: On the cofiniteness of local cohomology modules. Proc. Am. Math. Soc. 136 (2008), 2359-2363. DOI 10.1090/S0002-9939-08-09260-5 | MR 2390502 | Zbl 1141.13014
[8] Bahmanpour, K., Naghipour, R.: Cofiniteness of local cohomology modules for ideals of small dimension. J. Algebra 321 (2009), 1997-2011. DOI 10.1016/j.jalgebra.2008.12.020 | MR 2494753 | Zbl 1168.13016
[9] Bahmanpour, K., Naghipour, R., Sedghi, M.: Minimaxness and cofiniteness properties of local cohomology modules. Commun. Algebra 41 (2013), 2799-2814. DOI 10.1080/00927872.2012.662709 | MR 3169421 | Zbl 1273.13025
[10] Bahmanpour, K., Naghipour, R., Sedghi, M.: On the category of cofinite modules which is Abelian. Proc. Am. Math. Soc. 142 (2014), 1101-1107. DOI 10.1090/S0002-9939-2014-11836-3 | MR 3162233 | Zbl 1286.13017
[11] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511629204 | MR 1613627 | Zbl 0903.13006
[12] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993). DOI 10.1017/CBO9780511608681 | MR 1251956 | Zbl 0788.13005
[13] Delfino, D., Marley, T.: Cofinite modules and local cohomology. J. Pure Appl. Algebra 121 (1997), 45-52. DOI 10.1016/S0022-4049(96)00044-8 | MR 1471123 | Zbl 0893.13005
[14] Dibaei, M. T., Yassemi, S.: Associated primes and cofiniteness of local cohomology modules. Manuscr. Math. 117 (2005), 199-205. DOI 10.1007/s00229-005-0538-5 | MR 2150481 | Zbl 1105.13016
[15] Dibaei, M. T., Yassemi, S.: Associated primes of the local cohomology modules. Abelian Groups, Rings, Modules, and Homological Algebra P. Goeters, O. M. G. Jenda Lecture Notes in Pure and Applied Mathematics 249, Chapman & Hall/CRC, Boca Raton (2006), 51-58. MR 2229101 | Zbl 1124.13009
[16] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules. Proc. Am. Math. Soc. 133 (2005), 655-660. DOI 10.1090/S0002-9939-04-07728-7 | MR 2113911 | Zbl 1103.13010
[17] Enochs, E.: Flat covers and flat cotorsion modules. Proc. Am. Math. Soc. 92 (1984), 179-184. DOI 10.2307/2045180 | MR 0754698 | Zbl 0522.13008
[18] Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz loceaux et globeaux (SGA 2). Advanced Studies in Pure Mathematics 2, North-Holland Publishing, Amsterdam (1968), French. MR 0476737 | Zbl 0197.47202
[19] Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9 (1970), 145-164. DOI 10.1007/BF01404554 | MR 0257096 | Zbl 0196.24301
[20] Hassanzadeh-Lelekaami, D., Roshan-Shekalgourabi, H.: Extension functors of cominimax modules. Commun. Algebra 45 (2017), 621-629. DOI 10.1080/00927872.2016.1172613 | MR 3562526 | Zbl 1360.13044
[21] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules. Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. DOI 10.1017/S0305004100070493 | MR 1120477 | Zbl 0749.13007
[22] Irani, Y.: Cominimaxness with respect to ideals of dimension one. Bull. Korean Math. Soc. 54 (2017), 289-298. DOI 10.4134/BKMS.b160100 | MR 3614578 | Zbl 1359.13017
[23] Kawasaki, K.-I.: On a category of cofinite modules which is Abelian. Math. Z. 269 (2011), 587-608. DOI 10.1007/s00209-010-0751-0 | MR 2836085 | Zbl 1228.13020
[24] Lorestani, K. B., Sahandi, P., Yassemi, S.: Artinian local cohomology modules. Can. Math. Bull. 50 (2007), 598-602. DOI 10.4153/CMB-2007-058-8 | MR 2364209 | Zbl 1140.13016
[25] MacDonald, I. G.: Secondary representation of modules over a commutative ring. Symposia Mathematica 11 Academic Press, London (1973), 23-43. MR 0342506 | Zbl 0271.13001
[26] Mafi, A.: On the local cohomology of minimax modules. Bull. Korean Math. Soc. 48 (2011), 1125-1128. DOI 10.4134/BKMS.2011.48.6.1125 | MR 2894880 | Zbl 1232.13009
[27] Marley, T., Vassilev, J. C.: Cofiniteness and associated primes of local cohomology modules. J. Algebra 256 (2002), 180-193. DOI 10.1016/S0021-8693(02)00151-5 | MR 1936885 | Zbl 1042.13010
[28] Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge (1968). DOI 10.1017/CBO9781139171762 | MR 0879273 | Zbl 0603.13001
[29] Melkersson, L.: Properties of cofinite modules and applications to local cohomology. Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. DOI 10.1017/S0305004198003041 | MR 1656785 | Zbl 0921.13009
[30] Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285 (2005), 649-668. DOI 10.1016/j.jalgebra.2004.08.037 | MR 2125457 | Zbl 1093.13012
[31] Melkersson, L.: Cofiniteness with respect to ideals of dimension one. J. Algebra 372 (2012), 459-462. DOI 10.1016/j.jalgebra.2012.10.005 | MR 2990020 | Zbl 1273.13029
[32] Quy, P. H.: On the finiteness of associated primes of local cohomology modules. Proc. Am. Math. Soc. 138 (2010), 1965-1968. DOI 10.1090/S0002-9939-10-10235-4 | MR 2596030 | Zbl 1190.13010
[33] Schenzel, P.: Proregular sequences, local cohomology, and completion. Math. Scand. 92 (2003), 161-180. DOI 10.7146/math.scand.a-14399 | MR 1973941 | Zbl 1023.13011
[34] Yoshida, K.-I.: Cofiniteness of local cohomology modules for ideals of dimension one. Nagoya Math. J. 147 (1997), 179-191. DOI 10.1017/S0027763000006371 | MR 1475172 | Zbl 0899.13018
[35] Yoshizawa, T.: Subcategories of extension modules by Serre subcategories. Proc. Am. Math. Soc. 140 (2012), 2293-2305. DOI 10.1090/S0002-9939-2011-11108-0 | MR 2898693 | Zbl 1273.13018
[36] Zink, T.: Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring. Math. Nachr. 64 (1974), 239-252 German. DOI 10.1002/mana.19740640114 | MR 0364223 | Zbl 0297.13015
[37] Zöschinger, H.: Minimax-Moduln. J. Algebra 102 (1986), 1-32 German. DOI 10.1016/0021-8693(86)90125-0 | MR 0853228 | Zbl 0593.13012
Partner of
EuDML logo