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Abstract. Let R be a commutative Noetherian ring, I an ideal of R. Let t ∈ N0 be an
integer and M an R-module such that ExtiR(R/I,M) is minimax for all i 6 t+1. We prove

that if Hi
I(M) is FD61 (or weakly Laskerian) for all i < t, then the R-modules Hi

I(M)

are I-cominimax for all i < t and ExtiR(R/I,Ht
I(M)) is minimax for i = 0, 1. Let N

be a finitely generated R-module. We prove that ExtjR(N,Hi
I(M)) and Tor

R
j (N,Hi

I(M))

are I-cominimax for all i and j whenever M is minimax and Hi
I(M) is FD61 (or weakly

Laskerian) for all i.
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1. Introduction

Throughout this paper R is a commutative Noetherian ring with nonzero identity

and I an ideal of R. For an R-module M , the ith local cohomology module M with

respect to the ideal I is defined as

Hi
I(M) ∼= lim−→

n

ExtiR(R/In,M).

Grothendieck in [18] proposed the following conjecture:

Conjecture 1.1. Let M be a finitely generated R-module and I an ideal of R.

Then HomR(R/I,Hi
I(M)) is finite for all i > 0.

Although the conjecture is not true in general as Hartshorne showed in [19], some

authors proved that for some numbers t, the module HomR(R/I,Ht
I(M)) is finite

under some conditions. See [2], Theorem 3.4, [3], Theorem 3.3, [7], Theorem 2.3,
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[8], Theorem 2.6, [14], Theorem 2.1, and [15], Theorem 6.3.9. Hartshorne also defined

a module M to be I-cofinite if SuppR(M) ⊆ V (I) and ExtiR(R/I,M) is finitely

generated for all i > 0, and posed the following question:

Question 1.2. LetM be a finite R-module and I an ideal of R. When areHi
I(M)

I-cofinite for all i > 0?

This question was studied by several authors in [2], [6], [8], [13], [19], [21], [34],

[27], [29], and [30].

As a special case of [35], Definition 2.1, and a generalization of FSF modules

(see [32], Definition 2.1), in [2], Definition 2.1, the author of the present paper and

Bahmanpour introduced the class of FD6n modules. A module M is said to be

an FD6n module, if there exists a finitely generated submodule N of M such that

dimM/N 6 n. For more details about properties of this class see [2], Lemma 2.3.

Note that the class of FD6−1 is the same as that of finitely generated R-modules.

Recall that a moduleM is a minimax module if there is a finitely generated submod-

ule N ofM such that the quotient moduleM/N is Artinian. Minimax modules were

studied by Zöschinger in [37]. Note that for a complete Noetherian local ring, the

class of minimax modules is the same as the class of Matlis reflexive modules (see [17]

and [36]). Since the class of minimax modules is a generalization of Matlis reflex-

ive modules, the study of minimax modules is as important as the study of Matlis

reflexive modules. As a generalization of I-cofinite modules, in [4], the authors, in-

troduced the concept of I-cominimax or cominimax modules with respect to I. An

R-module M is an I-cominimax module if SuppR(M) ⊆ V (I) and ExtiR(R/I,M) is

a minimax module for all i > 0. Recall too that an R-module M is called weakly

Laskerian if AssR(M/N) is a finite set for each submodule N of M . The class of

weakly Laskerian modules was introduced in [16]. Bahmanpour in [5], Theorem 3.3,

proved that over Noetherian rings, an R-module M is weakly Laskerian if and only

if M is an FSF module. Thus the class of weakly Laskerian modules is contained in

the class of FD61 modules.

Recently many authors have studied the minimaxness and cominimaxness of local

cohomology modules and answered Conjecture 1.1 and Question 1.2 in the class of

minimax modules in some cases (see [1], [7], [20], [22] [24], [26]). The purpose of

this note is to make a suitable generalization of Conjecture 1.1 and Question 1.2 in

terms of minimax modules instead of finitely generated modules. In this direction in

Section 2, we generalize [2], Theorem 3.4 and Corollaries 3.5 and 3.6. More precisely,

we will show:

Theorem 1.3 (See Theorem 2.7 and Corollary 2.10). Let R be a Noetherian

ring and I an ideal of R. Let t ∈ N0 be an integer and M an R-module such that
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ExtiR(R/I,M) are minimax for all i 6 t + 1. Let the R-modules Hi
I(M) be FD61

(or weakly Laskerian) R-modules for all i < t. Then the following conditions hold:

(i) The R-modules Hi
I(M) are I-cominimax for all i < t.

(ii) For all FD60 (or minimax) submodules N of H
t
I(M), the R-modules

HomR(R/I,Ht
I(M)/N) and Ext1R(R/I,Ht

I(M)/N)

are minimax. In particular, the set AssR(H
t
I(M)/N) is finite.

Corrolary 1.4 (See Corollary 2.8). Let R be a Noetherian ring and I an ideal

of R. Let M be an R-module such that ExtiR(R/I,M) are minimax for all i and the

R-modules Hi
I(M) are FD61 (or weakly Laskerian) R-modules for all i. Then:

(i) The R-modules Hi
I(M) are I-cominimax for all i.

(ii) For any i > 0 and for any FD60 (or minimax) submodule N of H
i
I(M), the

R-module Hi
I(M)/N is I-cominimax.

Hartshorne in [19] also asked the following question:

Question 1.5. Does the category M(R, I)cof of I-cofinite modules form an

Abelian subcategory of the category of all R-modules? That is, if f : M → N is an

R-module homomorphism of I-cofinite modules, are Ker f and Coker f I-cofinite?

With respect to this question, Hartshorne proved that if I is a prime ideal of di-

mension one in a complete regular local ring R, then the answer to his question is

affirmative. On the other hand, in [13], Delfino and Marley extended this result to

arbitrary complete local rings. Recently, Kawasaki in [23] generalized the Delfino

and Marley’s result to an arbitrary ideal I of dimension one in a local ring R.

Finally, Melkersson in [31] completely removed the local assumption on R. More

recently, in [2] and [10] it is shown that Hartshorne’s question is true for the cate-

gory of all I-cofinite R-modules M with dimM 6 1 and the class of I-cofinite FD61

modules, respectively, for all ideals I in a commutative Noetherian ring R. Irani

in [22], Theorem 2.5, proved that the category of all I-cominimax R-modules M

with dimM 6 1 is Abelian. One of the main results of this section is to prove

that the class of I-cominimax weakly Laskerian (WL(R, I)comin) and I-cominimax

FD61(FD1(R, I)comin) modules are Abelian categories. (See Theorem 2.11.) Using

this fact we generalize [20], Corollary 3.5, as follows:

Corrolary 1.6 (See Corollary 2.13). Let I be an ideal of a Noetherian ring R,M

a nonzero minimax R-module such that Hi
I(M) is FD61 for all i > 0. Then for

each finite R-module N , the R-modules ExtjR(N,Hi
I(M)) and TorRj (N,Hi

I(M)) are

I-cominimax and FD61 modules for all i > 0 and j > 0.
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Throughout this paper, R will always be a commutative Noetherian ring with

nonzero identity and I will be an ideal of R. We denote {p ∈ SpecR : p ⊇ I}

by V (I).

For any unexplained notation and terminology we refer the reader to [11], [12]

and [28].

2. Cominimaxness of local cohomology

We begin with an example showing us that the class of cofinite modules with

respect to an ideal is strictly contained in the class of cominimax modules with

respect to the same ideal.

Example 2.1. Let (R,m) be a local ring and p a prime ideal of R such that

dimR/p = 1. Then it is easy to see that the R-module E(R/p) is p-cominimax but

not p-cofinite.

The following useful lemma will be needed in the proof of Proposition 2.4.

Lemma 2.2. Let I be an ideal of a Noetherian ring R andM an FD60 R-module

such that SuppR(M) ⊆ V (I). Then the following statements are equivalent:

(i) M is I-cominimax.

(ii) The R-module HomR(R/I,M) is minimax.

P r o o f. We know by definitions that (ii) follows from (i). Let N be a finite

submodule ofM such that dimM/N 6 0 and suppose the R-module HomR(R/I,M)

is minimax.

The exactness of

0 → HomR(R/I,N) → HomR(R/I,M) → HomR(R/I,M/N) → Ext1R(R/I,N)

implies that HomR(R/I,M/N) is minimax. Since dimM/N 6 0, it is easy to see

that HomR(R/I,M/N) is an Artinian R-module. As M/N is I-torsion, it follows by

Melkersson’s theorem thatM/N is Artinian. ThusM is minimax. The I-torsionness

of M imples that it is I-cominimax. �

The following lemma improves and generalizes the condition of [2], Lemma 2.5.

Lemma 2.3. Let I be an ideal of a Noetherian ring R and letM be an R-module

such that dimM = 1 and SuppR(M) ⊆ V (I). If HomR(R/I,M) is a minimax

R-module, then there is a finite submodule N of M and an element x ∈ I such that

SuppR(M/(xM +N)) ⊆ Max(R).
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P r o o f. Since HomR(R/I,M) is a minimax R-module we conclude that AssR(M)

is finite and therefore AsshR(M) = {p ∈ SuppM : dimR/p = 1} is finite. Consider

S = R \
⋃

p∈AsshR(M) p. It is easy to see that SuppS−1R(S
−1M) ⊆ V (S−1I) ∩

Max(S−1R). By the definition of minimax modules it follows that HomS−1R

(S−1R/S−1I, S−1M) is a finite S−1R-module. From [31], Lemma 2.1, we conclude

that S−1M is an Artinian S−1R-module and S−1I-cofinite. By [29], Corollary 1.2,

the S−1R-module S−1M/IS−1M is finite. Hence there is a finite submodule N ofM

such that S−1(M/(IM +N)) = 0. PutM = M/N . Then S−1M (as a homomorphic

image of S−1M) is an Artinian S−1R-module. Furthermore, S−1M = IS−1M . Then

by [25], 2.8, there is x ∈ I such that S−1M = xS−1M . Therefore S−1(M/xM) = 0

and hence SuppR(M/xM) ⊆ SuppR(M) \AsshR(M) ⊆ Max(R). Together with the

isomorphism M/xM∼=M/(xM +N), this proves our assertion. �

The following proposition is the same as [22], Proposition 2.4, but the method of

proof is completely different.

Proposition 2.4 (Compare [22], Proposition 2.4). Let I be an ideal of a Noethe-

rian ring R and M an R-module such that dimM 6 1 and SuppM ⊆ V (I). Then

the following statements are equivalent:

(i) M is I-cominimax.

(ii) The R-modules HomR(R/I,M) and Ext1R(R/I,M) are minimax.

P r o o f. The conclusion (i) ⇒ (ii) is obvious. In order to prove (ii) ⇒ (i) us-

ing Lemma 2.2, we may assume dimM = 1. Now use Lemma 2.3 instead of [31],

Lemma 2.1, and the I-cominimaxness instead of I-cofiniteness in the proof of [31],

Theorem 2.3. �

In what follows the next theorem plays an important role.

Theorem 2.5. Let I be an ideal of a Noetherian ringR andM an FD61 R-module

such that SuppM ⊆ V (I). Then the following statements are equivalent:

(i) M is I-cominimax.

(ii) The R-modules HomR(R/I,M) and Ext1R(R/I,M) are minimax.

P r o o f. (i) ⇒ (ii) is clear. In order to prove (ii) ⇒ (i), by definition there is

a finitely generated submodule N of M such that dim(M/N) 6 1 and SuppM/N ⊆

V (I). Also, the exact sequence

(∗) 0 → N → M → M/N → 0
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induces the exact sequence

0 → HomR(R/I,N) → HomR(R/I,M) → HomR(R/I,M/N)

→ Ext1R(R/I,N) → Ext1R(R/I,M) → Ext1R(R/I,M/N) → Ext2R(R/I,N).

Hence, it follows that the R-modules HomR(R/I,M/N) and Ext1R(R/I,M/N)

are finitely generated. Therefore, in view of Proposition 2.4, the R-module M/N is

I-cominimax. Now it follows from the exact sequence (∗) that M is I-cominimax.

�

The following lemma is needed in the proof of the next theorem.

Lemma 2.6. Let I be an ideal of a Noetherian ring R, M a nonzero R-module

and t ∈ N0. Suppose that the R-module H
i
I(M) is I-cominimax for all i < t, and the

R-modules ExttR(R/I,M) and Extt+1
R (R/I,M) are minimax. Then the R-modules

HomR(R/I,Ht
I(M)) and Ext1R(R/I,Ht

I(M)) are minimax.

P r o o f. We use induction on t. The exact sequence

(∗) 0 → ΓI(M) → M → M/ΓI(M) → 0

induces the exact sequence:

0 → HomR(R/I,ΓI(M)) → HomR(R/I,M) → HomR(R/I,M/ΓI(M))

→ Ext1R(R/I,ΓI(M)) → Ext1R(R/I,M).

Since HomR(R/I,M/ΓI(M)) = 0 so HomR(R/I,ΓI(M)) and Ext1R(R/I,ΓI(M)) are

minimax. Assume inductively that t > 0 and that we have established the result

for nonnegative integers smaller than t. By applying the functor HomR(R/I,−)

to the exact sequence (∗), we can deduce that ExtjR(R/I,M/ΓI(M)) is minimax

for j = t, t + 1. On the other hand, H0
I (M/ΓI(M)) = 0 and Hj

I (M/ΓI(M)) ∼=

Hj
I (M) for all j > 0. Therefore we may assume that ΓI(M) = 0. Let E be an

injective hull of M and put N = E/M . Then HomR(R/I,E) = 0 = ΓI(E). Hence

ExtjR(R/I,N) ∼= Extj+1
R (R/I,M) and Hj

I (N) ∼= Hj+1
I (M) for all j > 0. Now,

the induction hypothesis yields that HomR(R/I,Ht−1
I (N)) and Ext1R(R/I,Ht−1

I (N))

are minimax and so HomR(R/I,Ht
I(M)) and Ext1R(R/I,Ht

I(M)) are minimax, as

required. �

We are now ready to state and prove the main results (Theorem 2.7 and the

Corollaries 2.8 and 2.10) which are extensions of Bahmanpour-Naghipour’s results
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in [7] and [8] in terms of minimax modules, [1], Corollary 2.3, [2], Theorem 3.4 and

Corollaries 3.5 and 3.6, [24], Corollary 2.3, and Hong Quy’s result in [32].

Theorem 2.7. Let R be a Noetherian ring and I an ideal of R. Let t ∈ N0 be an

integer and M an R-module such that ExtiR(R/I,M) are minimax for all i 6 t+ 1.

Let the R-modules Hi
I(M) be FD61 R-modules for all i < t. Then the following

assertions hold:

(i) The R-modules Hi
I(M) are I-cominimax for all i < t.

(ii) For all FD60 (or minimax) submodules N of H
t
I(M), the R-modules

HomR(R/I,Ht
I(M)/N) and Ext1R(R/I,Ht

I(M)/N)

are minimax. In particular, the set AssR(H
t
I(M)/N) is finite.

P r o o f. (i) We proceed by induction on t. In the case t = 0 there is nothing to

prove. So, let t > 0 and suppose the result has been proved for smaller values of t.

By the inductive assumption, Hi
I(M) is I-cominimax for i = 0, 1, . . . , t−2. Hence by

Lemma 2.6 and the assumption, HomR(R/I,Ht−1
I (M)) and Ext1R(R/I,Ht−1

I (M))

are minimax. Therefore by Theorem 2.5, Hi
I(M) is I-cominimax for all i < t. This

completes the inductive step.

(ii) In view of (i) and Lemma 2.6, HomR(R/I,Ht
I(M)) and Ext1R(R/I,Ht

I(M))

are minimax. On the other hand, according to Lemma 2.2, N is I-cominimax. Now,

the exact sequence

0 → N → Ht
I(M) → Ht

I(M)/N → 0

induces the exact sequence

HomR(R/I,Ht
I(M)) → HomR(R/I,Ht

I(M)/N) → Ext1R(R/I,N)

→ Ext1R(R/I,Ht
I(M)) → Ext1R(R/I,Ht

I(M)/N) → Ext2R(R/I,N).

Consequently,

HomR(R/I,Ht
I(M)/N) and Ext1R(R/I,Ht

I(M)/N)

are minimax, as required. �

Corollary 2.8. Let R be a Noetherian ring and I an ideal of R. Let M be an

R-module such that ExtiR(R/I,M) are minimax for all i and the R-modules Hi
I(M)

are FD61 (or weakly Laskerian) R-modules for all i. Then:

(i) The R-modules Hi
I(M) are I-cominimax for all i.

(ii) For any i > 0 and for any FD60 (or minimax) submodule N of H
i
I(M), the

R-module Hi
I(M)/N is I-cominimax.
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P r o o f. (i) Clear.

(ii) In view of (i) the R-module Hi
I(M) is I-cominimax for all i. Hence the

R-module HomR(R/I,N) is minimax, and so it follows from Lemma 2.2 that N is

I-cominimax. Now, the exact sequence

0 → N → Hi
I(M) → Hi

I(M)/N → 0

and [4], Proposition 3.3, imply that the R-module Hi
I(M)/N is I-cominimax. �

Corollary 2.9. Let R be a Noetherian ring and I an ideal of R. Let M be

an R-module such that the R-modules Hi
I(M) are FD61 (or weakly Laskerian)

R-modules for all i. Then the following conditions are equivalent:

(i) The R-modules ExtiR(R/I,M) are minimax for all i.

(ii) The R-modules Hi
I(M) are I-cominimax for all i.

P r o o f. (i) ⇒ (ii) follows by Corollary 2.8.

(ii) ⇒ (i) follows by [30], Proposition 3.9. �

Corollary 2.10. Let R be a Noetherian ring and I an ideal of R. Let t ∈ N0 be an

integer and M an R-module such that ExtiR(R/I,M) are minimax for all i 6 t+ 1.

Let the R-modules Hi
I(M) be weakly Laskerian for all i < t. Then the following

conditions hold:

(i) The R-modules Hi
I(M) are I-cominimax for all i < t.

(ii) For all FD60 (or minimax) submodule N of H
t
I(M), the R-modules

HomR(R/I,Ht
I(M)/N) and Ext1R(R/I,Ht

I(M)/N)

are minimax. In particular, the set AssR(H
t
I(M)/N) is finite.

P r o o f. Use Theorem 2.7 and note that the category of weakly Laskerian modules

is contained in the category of FD61 modules. �

One of the main results of this section is to prove that for an arbitrary ideal I

of a Noetherian ring R, the category of I-cominimax FD61 modules is an Abelian

category.

Theorem 2.11. Let I be an ideal of a Noetherian ring R. Let FD1(R, I)com

denote the category of I-cominimax FD61 R-modules. Then FD1(R, I)com is an

Abelian category.
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P r o o f. Let M,N ∈ FD1(R, I)com and let f : M → N be an R-homomorphism.

By [2], Lemma 2.3 (v), Ker f and Coker f are FD61, so it is enough to show that

the R-modules Ker f and Coker f are I-cominimax. To this end, the exact sequence

0 → Ker f → M → Im f → 0

induces an exact sequence

0 → HomR(R/I,Ker f) → HomR(R/I,M) → HomR(R/I, Im f)

→ Ext1R(R/I,Ker f) → Ext1R(R/I,M)

which implies the R-modules HomR(R/I,Ker f) and Ext1R(R/I,Ker f) are minimax.

Therefore it follows from Theorem 2.5 that Ker f is I-cominimax. Now, using [4],

Proposition 3.3, the assertion follows from the exact sequences

0 → Ker f → M → Im f → 0,

and

0 → Im f → N → Coker f → 0.

�

The following corollary is a generalization of [20], Theorem 3.4.

Corollary 2.12. Let I be an ideal of a Noetherian ring R. Let M be an FD61

I-cominimax R-module. Then the R-modules ExtiR(N,M) and TorRi (N,M) are

I-cominimax and FD61 modules, for all finitely generated R-modules N and all

integers i > 0.

P r o o f. Since N is finitely generated it follows that N has a free resolution of

finitely generated free modules. Now the assertion follows using Theorem 2.11 and

computing the modules TorRi (N,M) and ExtiR(N,M), by this free resolution. �

The following two corollaries are generalizations of [20], Corollary 3.5.

Corollary 2.13. Let I be an ideal of a Noetherian ring R,M a nonzero minimax

R-module such that Hi
I(M) is FD61 for all i > 0. Then for each finite R-module N ,

the R-modules ExtjR(N,Hi
I(M)) and TorRj (N,Hi

I(M)) are I-cominimax and FD61

modules for all i > 0 and j > 0.

P r o o f. Note that by Corollary 2.8, Hi
I(M) is I-cominimax for all i > 0. Now

the assertion followes from Corollary 2.12. �
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Corollary 2.14. Let I be an ideal of a Noetherian ring R,M a nonzero min-

imax R-module such that dimM/IM 6 1 (e.g., dimR/I 6 1). Then for each

finite R-module N , the R-modules ExtjR(N,Hi
I(M)) and TorRj (N,Hi

I(M)) are

I-cominimax and FD61 modules for all i > 0 and j > 0.

P r o o f. Note that dimSuppHi
I(M) 6 dimM/IM 6 1, thus Hi

I(M) is an FD61

R-module and by Corollary 2.8 it is I-cominimax. �

In the end we give an example to show that in [2], Theorem 3.4, one cannot

choose the submodule N in the class of FD61 modules and N must be a minimax

or FD60 module.

Example 2.15. Let (R,m) be a Noetherian Gorenstein local ring of dimension

d = 4 and x1, x2, x3, x4 a system of parameters of R. Let I = Rx1 + Rx2 and

J = Rx3+Rx4. Then by the proof of [9], Example 2.7, we have H
3
I∩J(R) ∼= E(R/m).

Now since dimR/I ∩ J = 2, there exists x ∈ R such that dimR/(I ∩ J) + Rx = 1.

Let (I ∩ J) +Rx = K. By [33], Corollary 3.5, we have the exact sequence

0 → H1
Rx(H

2
I∩J(R)) → H3

K(R) → H0
Rx(H

3
I∩J (R)) → 0.

Since dimR/K = 1, hence Hi
K(R) are K-cofinite for all i > 0 by [8], Corollary 2.7.

On the other hand, since R is local, they are also weakly Laskerian and so FD61.

Consider H1
Rx(H

2
I∩J (R)) = N , so by the above exact sequence N 6 H3

K(R) and

therefore N is FD61. Applying the functor HomR(R/K,−) to the above exact

sequence we obtain the exact sequence

0 → HomR(R/K,N) → HomR(R/K,H3
K(R))

→ HomR(R/K,E(R/m)) → Ext1R(R/K,N).

The R-module Ext1R(R/K,N) cannot be finitely generated, otherwise

HomR(R/K,E(R/m))

is finitely generated as an R-module and R/K-module. This implies R/K is an

Artinian ring which is a contradiction. Thus N cannot be K-cofinite.

Acknowledgment. The author thanks the referee for his/her careful reading and

many helpful suggestions on this paper.
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