Previous |  Up |  Next

Article

Keywords:
multivariate stochastic dominance; multivariate normal distribution; stochastic dominance rules
Summary:
Stochastic dominance is widely used in comparing two risks represented by random variables or random vectors. There are general approaches, based on knowledge of distributions, which are dedicated to identify stochastic dominance. These methods can be often simplified for specific distribution. This is the case of univariate normal distribution, for which the stochastic dominance rules have a very simple form. It is however not straightforward if these rules are also valid for multivariate normal distribution. We propose the stochastic dominance rules for multivariate normal distribution and provide a rigorous proof. In a computational experiment we employ these rules to test its efficiency comparing to other methods of stochastic dominance detection.
References:
[1] Aitchison, J.: The Statistical Analysis of Compositional Data. The Blackburn Press 2003. MR 0865647
[2] Anděl, J.: Základy matematické statistiky. Matfyzpress 2005.
[3] Armbruster, B., Luedtke, J.: Models and formulations for multivariate dominance-constrained stochastic programs. IIE Transactions 47 (2015), 1-14. DOI 10.1080/0740817x.2014.889336
[4] Dentcheva, D., Ruszczýnski, A.: Optimization with multivariate stochastic dominance constraints. Math. Programming 117 (2009), 111-127. DOI 10.1007/s10107-007-0165-x | MR 2421301
[5] Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6 (1979), 65-70. MR 0538597
[6] Huang, C. C., Vertinsky, I., Ziemba, W. T.: On multiperiod stochastic dominance. J. Financ. Quantitat. Anal. 13 (1978), 1-13. DOI 10.2307/2330516
[7] Kopa, M., Petrová, B.: Strong and weak multivariate first-order stochastic dominance. SSRN Electron. J. xx (2017), xxx-xxx. DOI 10.2139/ssrn.3144058
[8] Levhari, D., Paroush, J., Peleg, B.: Efficiency analysis for multivariate distributions. Rev. Econom. Stud. 42 (1975), 87-91. DOI 10.2307/2296822
[9] Levy, H.: Stochastic dominance, efficiency criteria and efficient portfolios: the multiperiod case. Amer. Econom. Rev. 63 (1973), 986-994. DOI 10.1142/9789814417358_0018
[10] Levy, H.: Stochastic Dominance: Investment Decision Making under Uncertainty. Springer 2006. MR 2239375
[11] Levy, H.: Stochastic Dominance (Investment Decision Making Under Uncertainty). Springer 2016. MR 3525602
[12] Levy, H., Paroush, J.: Multi-period stochastic dominance. J. Financ. Quantitat. Anal. 21 (1974), 428-435. DOI 10.1287/mnsc.21.4.428 | MR 0439069
[13] Műller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley 2002. MR 1889865
[14] Ortobelli, S.: The classification of parametric choices under uncertainty: analysis of the portfolio choice problem. Theory and Decision 51 (2001), 297-327. DOI 10.1023/a:1015511211848 | MR 1944466
[15] Ortobelli, S., Lando, T., Petronio, F., Tichý, T.: Asymptotic stochastic dominance rules for sums of iid random variables. J. Comput. Appl. Math. 300 (2016), 432-448. DOI 10.1016/j.cam.2015.12.017 | MR 3460310
[16] Ortobelli, S., Lando, T., Petronio, F., Tichý, T.: Asymptotic multivariate dominance: A financial application. Methodol. Comput. Appl. Probab. 18 (2016), 1097-1115. DOI 10.1007/s11009-016-9502-y | MR 3564855
[17] Shaked, M., Shanthikumar, J. G.: Stochastic Orders and their Applications. Academic Press 1993. MR 1278322
[18] Tong, Y. L.: The Multivariate Normal Distribution. Springer Series in Statistics 1990. DOI 10.1007/978-1-4613-9655-0 | MR 1029032
Partner of
EuDML logo