Previous |  Up |  Next

Article

Keywords:
asset-liability management; multi-stage stochastic programming; stress test
Summary:
We build a multi-stage stochastic program of an asset-liability management problem of a leasing company, analyse model results and present a stress-testing methodology suited for financial applications. At the beginning, the business model of such a company is formulated. We introduce three various risk constraints, namely the chance constraint, the Value-at-Risk constraint and the conditional Value-at-Risk constraint along with the second-order stochastic dominance constraint, which are applied to the model to control risk of the optimal strategy. We also present the structure and the generation process of our scenarios. To capture the evolution of interest rates the Hull-White model is used. Thereafter, results of the model and the effect of the risk constraints on the optimal decisions are thoroughly investigated. In the final part, the performance of the optimal solutions of the problems for unconsidered and unfavourable crisis scenarios is inspected. The methodology of a stress test we used was proposed in such a way that it answers typical questions asked by asset-liability managers.
References:
[1] Artzner, P., Delbaen, F., Eber, J M., Heath, D.: Coherent measures of risk. Math. Finance 3 (1999), 203-228. DOI 10.1111/1467-9965.00068 | MR 1850791
[2] Brigo, D., Mercurio, F.: Interest Rate Models - Theory and Practice with Smile, Inflation and Credit. (Second edition.). Springer Verlag, Berlin 2001. MR 1846525
[3] Broeders, D., Chen, A., Koos, B.: An Institutional Evaluation of Pension Funds and Life Insurance Companies. De Nederlandsche Bank, 2009.
[4] Carino, D. R., Kent, T., Myers, D. H., Stacy, C., Sylvanus, M., Turner, A. L., Watanabe, K., Ziemba, W. T.: The Russell-Yasuda Kasai model: An asset/liability model for a Japanese insurance company using multistage stochastic programming. Interfaces 24 (1994), 1, 29-49. DOI 10.1287/inte.24.1.29
[5] Chen, R. R., Scott, L.: Maximum likelihood estimation for a multifactor equilibrium model of the term structure of interest rates. J. Fixed Incom. 3 (1003),14-31. DOI 10.3905/jfi.1993.408090
[6] Cox, J. C., Ingersoll, J. E., Ross, S A.: A theory of the term structure of interest rates. Econometrica 53 (1985), 385-407. DOI 10.2307/1911242 | MR 0785475 | Zbl 1274.91447
[7] Dempster, M. A. H., Ireland, A. M.: MIDAS: An expert debt management advisory system. In: Data, Expert Knowledge and Decisions, Springer 1988, pp. 116-127. DOI 10.1007/978-3-642-73489-2\_11
[8] Dentcheva, D., Ruszczynski, A.: Optimization with stochastic dominance constraints. SIAM J. Optim. 14 (2003), 2, 548-566. DOI 10.1137/s1052623402420528 | MR 2048155
[9] Dert, C. L.: Asset Liability Management for Pension Funds: A Multistage Chance Constrained Programming Approach. PhD Thesis, Erasmus University, Rotterdam 1995.
[10] Dupačová, J., Kopa, M.: Robustness in stochastic programs with risk constraints. Ann. Oper. Res. 200 (2012), 1, 55-74. DOI  | MR 2989600
[11] Dupačová, J., Kopa, M.: Robustness of optimal portfolios under risk and stochastic dominance constraints. Europ. J. Oper- Res. 234 (2014), 434-441. DOI 10.1016/j.ejor.2013.06.018 | MR 3144732
[12] Dupačová, J.: Stability in stochastic programming with recourse. Contaminated distributions. Math. Programm. Study 27 (1986), 133-144. DOI 10.1007/bfb0121117 | MR 0836754
[13] Dupačová, J.: Stress testing via contamination. In: Coping with Uncertainty: Modeling and Policy Issues (K. Marti, Y. Ermoliev, M. Makowski, and G. Pflug, eds.), Springer, Berlin 2006, pp. 29-46. DOI 10.1007/3-540-35262-7_2 | MR 2278935
[14] Dupačová, J., Kozmík, V.: Stress testing for risk-averse stochastic programs. Acta Math. Univ. Comenianae LXXXIV (2015), 2, 205-217. MR 3400375
[15] Dupačová, J., Polívka, J.: Asset-liability management for Czech pension funds using stochastic programming. Ann. Oper. Res. 165 (2009), 5-28. DOI 10.1007/s10479-008-0358-6 | MR 2470980
[16] Geyer, A., Ziemba, W. T.: The Innovest Austrian pension fund financial planning model InnoALM. Oper. Res. 56 (2008), 4, 797-810. DOI 10.1287/opre.1080.0564 | MR 2454099
[17] Hadar, J., Russell, W. R.: Rules for ordering uncertain prospects. Amer. Econom. Rev. 59 (1969), 25-34.
[18] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities. Cambridge University Press, Cambridge 1934. DOI 10.1017/s0025557200027455 | MR 0944909 | Zbl 0634.26008
[19] Hoyland, K.: Asset Liability Management for a Life Insurance Company: A Stochastic Programming Approach. PhD Thesis, Norwegian University of Science and Technology, 1998.
[20] Hull, J., White, A.: Pricing interest-rate derivative securities. Rev. Financ. Stud. 3 (1990), 573-592. DOI 10.1093/rfs/3.4.573
[21] Haneveld, W. K. Klein, Streutker, M. H., Vlerk, M. H. van der: An ALM model for pension funds using integrated chance constraints. Ann. Oper. Res. 177 (2010), 1, 47-62. DOI 10.1007/s10479-009-0594-4 | MR 2646828
[22] Kopa, M., Moriggia, V., Vitali, S.: Individual optimal pension allocation under stochastic dominance constraints. Ann. Oper. Res. 260 (2018), 1-2, 255-291. DOI 10.1007/s10479-016-2387-x | MR 3741562
[23] Kuosmanen, T.: Efficient diversification according to stochastic dominance criteria. Management Sci. 50 (2004), 10, 1390-1406. DOI 10.1287/mnsc.1040.0284
[24] Kusy, M. I., Ziemba, W. T.: A bank asset and liability management model. Oper. Res. 34 (1986), 356-376. DOI 10.1287/opre.34.3.356
[25] Levy, H.: Stochastic dominance and expected utility: Survey and analysis. Management Sci. 38 (1992), 4, 555-593. DOI 10.1287/mnsc.38.4.555
[26] Morgan, J. P.: Risk Metrics. Technical Document. Fourth Edition. Morgan Guaranty Trust Company, New York 1995.
[27] Moriggia, V., Kopa, M., Vitali, S.: Pension fund management with hedging derivatives, stochastic dominance and nodal contamination. Omega - Int. J. Management Sci. 2018. DOI 10.1016/j.omega.2018.08.011
[28] Pflug, G. Ch.: Some remarks on the value-at-risk and the conditional value-at-risk. In: Probabilistic Constrained Optimization: Methodology and Application (S. P. Uryasev, ed.), Kluwer, 1999. DOI 10.1007/978-1-4757-3150-7_15 | MR 1819417
[29] Pflug, G. Ch., Pichler, A.: Multistage Stochastic Optimization. Springer Series, New York 2014. MR 3288310
[30] Pliska, S. R., Jinchun, Ye: Optimal life insurance purchase and consumption/investment under uncertain lifetime. J. Banking Finance 31 (2007) 5, 1307-1319. DOI 10.1016/j.jbankfin.2006.10.015 | MR 2709330
[31] Post, T., Kopa, M.: Portfolio choice based on third-degree stochastic dominance. Management Sci. 63 (2017), 10, 3381-3392. DOI 10.1287/mnsc.2016.2506
[32] Post, T., Fang, Y., Kopa, M.: Linear tests for dara stochastic dominance. Management Sci. 61 (2015), 7, 1615-1629. DOI 10.1287/mnsc.2014.1960 | MR 0668272
[33] Rockafellar, R. T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2 (2000), 21-41. DOI 10.21314/jor.2000.038
[34] Rockafellar, R. T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Banking Finance 26 (2002), 7, 1443-1471. DOI 10.1016/s0378-4266(02)00271-6
[35] Telser, L. G.: Safety first and hedging. Rev. Econom. Stud. 23 (1955), 1, 1-16. DOI 10.2307/2296146
[36] Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econom. 5 (1977), 177-188. DOI 10.1016/0304-405x(77)90016-2
[37] Vitali, S., Moriggia, V., Kopa, M.: Optimal pension fund composition for an italian private pension plan sponsor. Comput. Management Sci. 14 (2017), 1, 135-160. DOI 10.1007/s10287-016-0263-4 | MR 3599603
Partner of
EuDML logo