Previous |  Up |  Next

Article

Keywords:
GARCH model; Kalman filter; outlier; robust recursive estimation; volatility
Summary:
The robust recursive algorithm for the parameter estimation and the volatility prediction in GARCH models is suggested. It seems to be useful for various financial time series, in particular for (high-frequency) log returns contaminated by additive outliers. The proposed procedure can be effective in the risk control and regulation when the prediction of volatility is the main concern since it is capable to distinguish and correct outlaid bursts of volatility. This conclusion is demonstrated by simulations and real data examples presented in the paper.
References:
[1] Aknouche, A., Guerbyenne, H.: Recursive estimation of GARCH models. Comm. Statist. Simul. Comput. 35 (2006), 925-938. DOI 10.1080/03610910600880328 | MR 2291371
[2] Balke, N. S., Fomby, T. B.: Large shocks, small shocks, and economic fluctuations: outliers in macroeconomics time series. J. Appl. Econometr. 31 (1994), 307-327. DOI 10.1002/jae.3950090205
[3] Bernholt, T., Fried, R., Gather, U., Wegener, I.: Modified repeated median filters. Statist. Comput. 16 (2006), 177-192. DOI 10.1007/s11222-006-8449-1 | MR 2227394
[4] Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econometr. 31 (1986), 307-327. DOI 10.1016/0304-4076(86)90063-1 | MR 0853051
[5] Bose, A., Mukherjee, K.: Estimating the ARCH parameters by solving linear equations. J. Time Series Anal. 24 (2003), 127-136. DOI 10.1111/1467-9892.00296 | MR 1965808
[6] Calvet, L. E., Czellar, V., Ronchetti, E.: Robust filtering. J. Amer. Statist. Assoc. 110 (2015), 1591-1606. DOI 10.1080/01621459.2014.983520 | MR 3449057
[7] Carnero, M. A., Peña, D., Ruiz, E.: Effects of outliers on the identification and estimation of GARCH models. J. Time Series Anal. 28 (2007), 471-497. DOI 10.1111/j.1467-9892.2006.00519.x | MR 2396627
[8] Carnero, M. A., Peña, D., Ruiz, E.: Estimating GARCH volatility in the presence of outliers. Econom. Lett. 114 (2012), 86-90. DOI 10.1016/j.econlet.2011.09.023 | MR 2879552
[9] Charles, A.: Forecasting volatility with outliers in GARCH models. J. Forecast. 27 (2008), 551-565. DOI 10.1002/for.1065 | MR 2588565
[10] Charles, A., Darné, O.: Outliers and GARCH models in financial data. Econom. Lett. 86 (2005), 347-352. DOI 10.1016/j.econlet.2004.07.019 | MR 2124418
[11] Cipra, T.: Robust exponential smoothing. J. Forecast. 11 (1992), 57-69. DOI 10.1002/for.3980110106
[12] Cipra, T.: Robust recursive estimation in nonlinear time-series. Comm. Statist. Theory Methods 27 (1998), 1071-1082. DOI 10.1080/03610929808832146 | MR 1626293
[13] Cipra, T., Hanzák, T.: Exponential smoothing for time series with outliers. Kybernetika 47 (2011), 165-178. MR 2828571
[14] Cipra, T., Romera, R.: Robust Kalman filter and its applications in time series analysis. Kybernetika 27 (1991), 481-494. MR 1150938
[15] Crevits, R., Croux, C.: Forecasting using robust exponential smoothing with damped trend and seasonal components. Working paper KBI_1714, KU Leuven, Leuven 2016 (DOI:10.13140/RG.2.2.11791.18080). DOI 10.13140/RG.2.2.11791.18080)
[16] Croux, C., Gelper, S.: Computational aspects of robust Holt-Winters smoothing based on M-estimation. Appl. Math. 53 (2008), 163-176. DOI 10.1007/s10492-008-0002-4 | MR 2411122
[17] Croux, C., Gelper, S. E. C., Mahieu, K.: Robust exponential smoothing of multivariate time series. Comput. Statist. Data Anal. 54 (2010), 2999-3006. DOI 10.1016/j.csda.2009.05.003 | MR 2727729
[18] Dalhaus, R., Rao, S. S.: A recursive online algorithm for the estimation of time-varying ARCH parameters. Bernoulli 13 (2007), 389-422. DOI 10.3150/07-bej5009 | MR 2331257
[19] Engle, R. F.: Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 (1982), 987-1007. DOI 10.2307/1912773 | MR 0666121
[20] Eraker, B., Johannes, M., Polson, N.: The impact of jumps in volatility and returns. J. Finance 58 (2003), 1269-1300. DOI 10.1111/1540-6261.00566
[21] Fasso, A.: Recursive least squares with ARCH errors and nonparametric modelling of environmental time series. Working Paper 6, University of Bergamo 2009.
[22] Franke, J., Härdle, W. K., Hafner, C. M.: Statistics of Financial Markets: An Introduction. Springer, Berlin 2011. DOI 10.1007/978-3-642-16521-4 | MR 2722946
[23] Franses, P. H., Ghijsels, H.: Additive outliers, GARCH and forecasting volatility. Int. J. Forecast. 15 (1999), 1-9. DOI 10.1016/s0169-2070(98)00053-3
[24] Galeano, P., Peña, D.: Finding outliers in linear and nonlinear time series. In: Robustness and Complex Data Structures (C. Becker, R. Fried, S. Kuhnt, eds.), Springer, Berlin 2013, pp. 243-260. DOI 10.1007/978-3-642-35494-6_15 | MR 3135884
[25] Gelper, S., Fried, R., Croux, C.: Robust forecasting with exponential and Holt-Winters smoothing. J. Forecast. 29 (2009), 285-300. DOI 10.1002/for.1125 | MR 2752114 | Zbl 1203.62164
[26] Gerencsér, L., Orlovits, Z., Torma, B.: Recursive estimation of GARCH processes. In: Proc. 19th International Symposium on Mathematical Theory and Systems - MTNS (A. Edelmayer, ed.), Eötvös Loránd University, Budapest 2010, pp. 2415-2422.
[27] Grané, A., Veiga, H.: Wavelet based detection of outliers in financial time series. Comput. Statist. Data Anal. 54 (2010), 2580-2593. DOI 10.1016/j.csda.2009.12.010 | MR 2720462
[28] Gregory, A. V., Reeves, J. J.: Estimation and inference in ARCH model in the presence of outliers. J. Financ. Econometr. 8 (2010), 547-569. DOI 10.1093/jjfinec/nbq028
[29] Grillenzoni, C.: Optimized adaptive prediction. J. Ital. Statist. Soc. 6 (1997), 37-58. DOI 10.1007/bf03178900
[30] Grillenzoni, C.: Recursive generalized M-estimators of system parameters. Technometrics 39 (1997), 211-224. DOI 10.2307/1270909
[31] Hendrych, R., Cipra, T.: Robustified on-line estimation of the EWMA models: Simulations and applications. In: Proc. 33rd International Conference Mathematical Methods in Economics (D. Martinčák, J. Ircingová, and P. Janeček, eds.). University of West Bohemia, Pilsen 2014, pp. 237-242. DOI 10.3311/ppee.9684
[32] Hendrych, R., Cipra, T.: Self-weighted recursive estimation of GARCH models. Comm. Statist. Simul. Comput. 47 (2018), 315-328. DOI 10.1080/03610918.2015.1053924 | MR 3757688
[33] Hill, J. B.: Robust estimation and inference for heavy tailed GARCH. Bernoulli 21 (2015), 1629-1669. DOI 10.3150/14-bej616 | MR 3352056
[34] Hotta, L. K., Tsay, R. S.: Outliers in GARCH processes. In: Economic time series: Modeling and seasonality (W. R. Bell, S. H. Holan, and T. S. McElroy, eds.). CRC Press, Boca Raton 2012, pp. 337-358. DOI 10.1201/b11823-20 | MR 3076022
[35] Hyndman, R. J., Koehler, A. B., Ord, J. K., Snyder, R. D.: Forecasting with Exponential Smoothing. The State Space Approach. Springer, Berlin 2008. DOI 10.1111/j.1751-5823.2009.00085_17.x
[36] Jiang, J., Zhao, Q., Hui, Y. V.: Robust modelling of ARCH models. J. Forecast. 20 (2001), 111-133. DOI 10.1002/1099-131x(200103)20:2<111::aid-for786>3.0.co;2-n
[37] Kierkegaard, J., Nielsen, J., Jensen, L., Madsen, H.: Estimating GARCH models using recursive methods.
[38] Koch, K. R., Yang, Y.: Robust Kalman filter for rank deficient observation models. J. Geodesy 72 (1998), 436-441. DOI 10.1007/s001900050183
[39] Lanius, V., Gather, U.: Robust online signal extraction from multivariate time series. Comput. Statist. Data Anal. 54 (2010), 966-975. DOI 10.1016/j.csda.2009.10.009 | MR 2580931
[40] Ling, S.: Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/ IGARCH models. J. Econometr. 140 (2007), 849-873. DOI 10.1016/j.jeconom.2006.07.016 | MR 2408929
[41] Ljung, L.: System Identification: Theory for the User. Prentice Hall PTR, Upper Saddle River 1999.
[42] Ljung, L., Söderström, T. S.: Theory and Practice of Recursive Identification. MIT Press, Cambridge 1983. MR 0719192
[43] Michálek, J.: Robust methods in exponential smoothing. Kybernetika 32 (1996), 289-306. MR 1438221
[44] Muler, N., Yohai, V.: Robust estimates for GARCH models. J. Statist. Planning Inference 138 (2008), 2918-2940. DOI 10.1016/j.jspi.2007.11.003 | MR 2442223
[45] Park, B.-J.: An outlier robust GARCH model and forecasting volatility of exchange rate returns. J. Forecast. 21 (2002), 381-393. DOI 10.1002/for.827
[46] Peng, L., Yao, Q.: Least absolute deviations estimation for ARCH and GARCH models. Biometrika 90 (2003), 967-975. DOI 10.1093/biomet/90.4.967 | MR 2024770
[47] Romera, R., Cipra, T.: On practical implementation of robust Kalman filtering. Comm. Statist. Simul. Comput. 24 (1995), 461-488. DOI 10.1080/03610919508813252 | MR 1333047 | Zbl 0850.62688
[48] Ruckdeschel, P., Spangl, B., Pupashenko, D.: Robust Kalman tracking and smoothing with propagating and non propagating outliers. Statist. Papers 55 (2014), 93-123. DOI 10.1007/s00362-012-0496-4 | MR 3152769
[49] Sakata, S., White, H.: High breakdown point conditional dispersion estimation with application to S&P 500 daily returns volatility. Econometrica 66 (1998), 529-567. DOI 10.2307/2998574
[50] Shaolin, H. U., Meinke, K., Ouyang, H., Guoji, S.: Outlier-tolerant Kalman filter of state vectors in linear stochastic system. Int. J. Advanced Computer Sci. Appl. 2 (2011), 37-41. DOI 10.14569/ijacsa.2011.021206
[51] Söderström, T. S., Stoica, P.: System Identification. Prentice Hall, New York 1989.
[52] Tsay, R. S.: Analysis of Financial Time Series. Wiley, Hoboken 2013. MR 2778591
[53] Yang, Y.: Adaptively robust Kalman filters with applications in navigation. In: Sciences of Geodesy (G. Xu, ed.), Springer, Berlin 2010, pp. 49-82. DOI 10.14569/ijacsa.2011.021206
[54] Yang, Y., Gao, W., Zhang, X.: Robust Kalman filtering with constraints: a case study for integrated navigation. J. Geodesy 84 (2010), 373-381. DOI 10.1007/s00190-010-0374-6
[55] Zhang, R., Ling, S.: Asymptotic inference for AR models with heavy-tailed G-GARCH noises. Econometr. Theory 31 (2015), 880-890. DOI 10.1017/s0266466614000632 | MR 3377272
[56] Zhu, K., Li, W. K.: A new Pearson-type QMLE for conditionally heteroskedastic models. J. Business Econom. Statist. 33 (2015), 552-565. DOI 10.1080/07350015.2014.977446 | MR 3416600
[57] Zhu, K., Ling, S.: Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models. Ann. Statist. 39 (2011), 2131-2163. DOI 10.1214/11-aos895 | MR 2893864
[58] Zhu, K., Ling, S.: LADE-based inference for ARMA models with unspecified and heavy-tailed heteroscedastic noises. J. Amer. Statist. Assoc. 110 (2015), 784-794. DOI 10.1080/01621459.2014.977386 | MR 3367264
Partner of
EuDML logo