Previous |  Up |  Next

Article

Keywords:
vector autoregression; change point; quasi-maximum likelihood
Summary:
In the paper a sequential monitoring scheme is proposed to detect instability of parameters in a multivariate autoregressive process. The proposed monitoring procedure is based on the quasi-likelihood scores and the quasi-maximum likelihood estimators of the respective parameters computed from a training sample, and it is designed so that the sequential test has a small probability of a false alarm and asymptotic power one as the size of the training sample is sufficiently large. The asymptotic distribution of the detector statistic is established under both the null hypothesis of no change as well as under the alternative that a change occurs.
References:
[1] Bai, J., Perron, P.: Estimating and testing linear models with multiple structural changes. Econometrica 66 (1998), 47-78. DOI 10.2307/2998540 | MR 1616121
[2] Berkes, I., Gombay, E., Horváth, L., Kokoszka, P.: Sequential change-point detection in GARCH(p,q) models. Econometr. Theory 20 (2004), 1140-1167. DOI 10.1017/s0266466604206041 | MR 2101953
[3] Mainassara, Y. Boubacar, Francq, C.: Estimating structural VARMA models with uncorrelated but non-independent error terms. J. Multivariate Anal. 102 (2011), 496-505. DOI 10.1016/j.jmva.2010.10.009 | MR 2755011
[4] Carsoule, F., Franses, P. H.: A note on monitoring time-varying parameters in an autoregression. DOI 10.1007/s001840200198
[5] Chu, C.-S. J., Stinchcombe, M., White, H.: Monitoring structural change. DOI 10.2307/2171955
[6] Davidson, J.: Stochastic Limit Theory. Oxford University Press, Oxford 1994. DOI 10.1093/0198774036.001.0001 | MR 1430804
[7] Dvořák, M.: Stability in Autoregressive Time Series Models. Ph.D. Dissertation, Charles University, Prague 2015.
[8] Gombay, E., Serban, D.: Monitoring parameter change in AR(p) time series models. DOI 10.1016/j.jmva.2008.08.005
[9] Hamilton, J. D.: Time Series Analysis. Princeton University Press, Princeton 1994. DOI 10.1017/s0266466600009440 | MR 1278033
[10] Horváth, L., Hušková, M., Kokoszka, P., Steinebach, J.: Monitoring changes in linear models. DOI 10.1016/j.jspi.2003.07.014
[11] Hlávka, Z., Hušková, M., Kirch, C., Meintanis, S. G.: Monitoring changes in the error distribution of autoregressive models based on Fourier methods. Test 21 (2012), 605-634. DOI 10.1007/s11749-011-0265-z | MR 2992085
[12] Hušková, M., Koubková, A.: Sequential procedures for detection of changes in autoregressive sequences.
[13] Kuelbs, J., Philipp, W.: Almost sure invariance principles for partial sums of mixing $B-$valued random variables. DOI 10.1214/aop/1176994565
[14] Li, F., Tian, Z., Qi, P.: Structural change monitoring for random coefficient autoregressive time series. Comm. Statist. Simulation Comput. 44 (2015), 996-1009. DOI 10.1080/03610918.2013.800205 | MR 3264916
[15] Lee, S., Lee, Y., Na, O.: Monitoring distributional changes in autoregressive models. DOI 10.1080/03610920902947261
[16] Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin 2005. DOI 10.1007/978-3-540-27752-1 | MR 2172368
[17] Na, O., Lee, J., Lee, S.: Monitoring parameter changes for random coefficient autoregressive models. DOI 10.1016/j.jkss.2010.03.006
[18] Prášková, Z.: Monitoring changes in RCA models. In: Stochastic Models, Statistics and Their Applications, Springer Proceedings in Mathematics and Statistics 122 (A. Steland, E. Rafajlowicz and K. Szajowski, eds.), Springer, Berlin 2015, pp. 129-137. DOI 10.1007/978-3-319-13881-7_15 | MR 3336417
[19] Straumann, D.: Estimation in Conditionally Heteroscedastic Time Series Models. Lecture Notes in Statistics 181, Springer, Berlin 2005. DOI 10.1007/b138400 | MR 2142271
Partner of
EuDML logo