[1] Baumgartner J. E.:
Applications of the proper forcing axiom. Handbook of Set-theoretic Topology, North-Holland Publishing, Amsterdam, 1984, pages 913–959.
MR 0776640
[2] Blass A., Shelah S.:
There may be simple $P_{\aleph_1}$- and $P_{\aleph_2}$-points and the Rudin-Keisler ordering may be downward directed. Ann. Pure Appl. Logic 33 (1987), no. 3, 213–243.
DOI 10.1016/0168-0072(87)90082-0 |
MR 0879489
[3] van Douwen E. K., Kunen K., van Mill J.:
There can be $C^*$-embedded dense proper subspaces in $\beta\omega-\omega$. Proc. Amer. Math. Soc. 105 (1989), no. 2, 462–470.
MR 0977925
[5] Dow A., Shelah S.:
More on tie-points and homeomorphism in $\mathbb N^\ast$. Fund. Math. 203 (2009), no. 3, 191–210.
DOI 10.4064/fm203-3-1 |
MR 2506596
[6] Dow A., Shelah S.:
An Efimov space from Martin's axiom. Houston J. Math. 39 (2013), no. 4, 1423–1435.
MR 3164725
[7] Drewnowski L., Roberts J. W.:
On the primariness of the Banach space $l_{\infty}/C_0$. Proc. Amer. Math. Soc. 112 (1991), no. 4, 949–957.
MR 1004417
[8] Farah I.:
Analytic quotients: theory of liftings for quotients over analytic ideals on the integers. Mem. Amer. Math. Soc. 148 (2000), no. 702, 177 pages.
MR 1711328 |
Zbl 0966.03045
[13] Just W.:
Nowhere dense $P$-subsets of $\omega$. Proc. Amer. Math. Soc. 106 (1989), no. 4, 1145–1146.
MR 0976360
[14] Katětov M.:
A theorem on mappings. Comment. Math. Univ. Carolinae 8 (1967), 431–433.
MR 0229228
[16] Koszmider P.:
Forcing minimal extensions of Boolean algebras. Trans. Amer. Math. Soc. 351 (1999), no. 8, 3073–3117.
MR 1467471 |
Zbl 0922.03071
[17] Kunen K.:
Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980.
MR 0597342 |
Zbl 0534.03026
[18] Kunen K., Vaughan J. E., eds.:
Handbook of Set-theoretic Topology. North-Holland Publishing, Amsterdam, 1984.
MR 0776619
[20] Pearl E., ed.:
Open Problems in Topology. II. Elsevier, Amsterdam, 2007.
MR 2367385
[21] Rabus M.:
On strongly discrete subsets of $\omega^\ast$. Proc. Amer. Math. Soc. 118 (1993), no. 4, 1291–1300.
MR 1181172
[22] Rabus M.:
An $\omega_2$-minimal Boolean algebra. Trans. Amer. Math. Soc. 348 (1996), no. 8, 3235–3244.
MR 1357881
[23] Šapirovskiĭ B. È.:
The imbedding of extremally disconnected spaces in bicompacta. $b$-points and weight of pointwise normal spaces. Dokl. Akad. Nauk SSSR 223 (1975), no. 5, 1083–1086 (Russian).
MR 0394609