[1] Agaian, S. S., Panetta, K., Grigoryan, A. M.:
Transform-based image enhancement algorithms with performance measure. IEEE Trans. Image Process. 10 (2001), 3, 367-382.
DOI 10.1109/83.908502
[2] Agaian, S. S., Silver, B., Panetta, K. A.:
Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Trans. Image Process. 16 (2007), 3, 741-758.
DOI 10.1109/tip.2006.888338 |
MR 2460190
[3] Bhateja, V., Misra, M., Urooj, S.:
Non-linear polynomial filters for edge enhancement of mammogram lesions. Comp. Meth. Programs Biomedicine 129 (2016), 125-134.
DOI 10.1016/j.cmpb.2016.01.007
[4] Burkhardt, D. A., Gottesman, J., Kersten, D., Legge, G. E.:
Symmetry and constancy in the perception of negative and positive luminance contrast. JOSA A 1 (1984), 3, 309-316.
DOI 10.1364/josaa.1.000309
[5] Chang, C.-M., Laine, A.:
Coherence of multiscale features for enhancement of digital mammograms. IEEE Trans. Inform. Technol. Biomedicine 3 (1999), 1, 32-46.
DOI 10.1109/4233.748974
[6] Dippel, S., Stahl, M., Wiemker, R., Blaffert, T.:
Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform. IEEE Trans. Medical Imaging 21 (2002), 4, 343-353.
DOI 10.1109/tmi.2002.1000258
[7] Erdem, C. E., Sankur, B., Tekalp, A. M.:
Performance measures for video object segmentation and tracking. IEEE Trans. Image Process. 13 (2004), 7, 937-951.
DOI 10.1109/tip.2004.828427
[8] Grim, J., Somol, P., Haindl, M., Daneš, J.:
Computer-aided evaluation of screening mammograms based on local texture models. IEEE Trans. Image Process. 18 (2009), 4, 765-773.
DOI 10.1109/tip.2008.2011168 |
MR 2662215
[9] Haun, A., Peli, E.:
Perceived contrast in complex images. J. Vision 13 (2013), 3, 2013.
DOI 10.1167/13.13.3
[10] King-Smith, P. E., Kulikowski, J.:
Pattern and flicker detection analysed by subthreshold summation. J. Physiology 249 (1975), 3, 519.
DOI 10.1113/jphysiol.1975.sp011028
[11] Levine, M. D., Nazif, A. M.:
Dynamic measurement of computer generated image segmentations. IEEE Trans. Pattern Analysis Machine Intell. 7 (1985), 155-164.
DOI 10.1109/tpami.1985.4767640
[12] Mencattini, A., Salmeri, M., Lojacono, R., Frigerio, M., Caselli, F.:
Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE Trans Instrument. Measurement 57 (2008), 7, 1422-1430.
DOI 10.1109/tim.2007.915470
[13] Michelson, A. A.: Studies in Optics. University of Chicago Press, Chicago 1927.
[14] Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., Cardoso, J. S.:
Inbreast: toward a full-field digital mammographic database. Academic Radiology 19 (2012), 2, 236-248.
DOI 10.1016/j.acra.2011.09.014
[15] Panetta, K., Zhou, Y., Agaian, S., Jia, H.:
Nonlinear unsharp masking for mammogram enhancement. IEEE Trans. Inform. Technol. Biomedicine 15 (2011), 6, 918-928.
DOI 10.1109/titb.2011.2164259
[17] Qi, H., Diakides, N. A.:
Thermal infrared imaging in early breast cancer detection - a survey of recent research. In: Proc. 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2, IEEE 2003, pp. 1109-1112.
DOI 10.1109/iembs.2003.1279442
[18] Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.:
A wavelet-based spatially adaptive method for mammographic contrast enhancement. Physics Medicine Biology 48 (2003), 6, 787.
DOI 10.1088/0031-9155/48/6/307
[19] Salvado, J., Roque, B.:
Detection of calcifications in digital mammograms using wavelet analysis and contrast enhancement. In: IEEE International Workshop on Intelligent Signal Processing 2005, IEEE 2005, pp. 200-205.
DOI 10.1109/wisp.2005.1531658
[20] Simone, G., Pedersen, M., Hardeberg, J. Y.:
Measuring perceptual contrast in digital images. J. Visual Commun. Image Representation 23 (2012), 3, 491-506.
DOI 10.1016/j.jvcir.2012.01.008
[21] Tadmor, Y., Tolhurst, D.:
Calculating the contrasts that retinal ganglion cells and \{LGN\} neurones encounter in natural scenes. Vision Research 40 (2000), 22, 3145-3157.
DOI 10.1016/s0042-6989(00)00166-8
[22] Tang, J., Liu, X., Sun, Q.:
A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms. IEEE J. Selected Topics Signal Process. 3 (2009), 1, 74-80.
DOI 10.1109/jstsp.2008.2011108
[23] Taylor, P., Champness, J., Given-Wilson, R., Johnston, K., Potts, H.:
Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography. Health Technol. Assessment 9 (2005), 6.
DOI 10.3310/hta9060
[24] Thangavel, K., Karnan, M., Sivakumar, R., Mohideen, A.: Cad system for preprocessing and enhancement of digital mammograms. Graphics, Vision Image Process. xx (2007), 55-60.
[25] Tweed, T., Miguet, S.:
Automatic detection of regions of interest in mammographies based on a combined analysis of texture and histogram. In: Proc. 16th International Conference on Pattern Recognition 2002, Vol. 2, Los Alamitos 2002. IEEE Computer Soc., pp. 448-452.
DOI 10.1109/icpr.2002.1048335
[26] Wang, H., Li, J.-B., Wu, L., Gao, H.:
Mammography visual enhancement in cad-based breast cancer diagnosis. Clinical Imaging 37 (2013), 273-282.
DOI 10.1016/j.clinimag.2012.04.018
[27] Weber, E. H.: The Sense of Touch. Academic Press, 1978.
[29] Yan, Z., Zhang, Y., Liu, B., Zheng, J., Lu, L., Xie, Y., Liang, Z., Li, J.:
Extracting hidden visual information from mammography images using conjugate image enhancement software. In: IEEE International Conference on Information Acquisition, IEEE Engineering in Medicine and Biology Society, 2005, pp. 4775-4778.
DOI 10.1109/icia.2005.1635092