[1] A, A. Belloni, Chernozhukov, V.:
Least squares after model selection in high-dimensional sparse models. Bernoulli 19 (2013), 521-547.
DOI 10.3150/11-bej410 |
MR 3037163
[4] Draper, N. R., Nostrand, R. C. Van:
Ridge regression and James-Stein estimation: review and comments. Technometrics 21 (1979), 451-466.
DOI 10.2307/1268284 |
MR 0555086
[8] James, W., Stein, C.:
Estimation with quadratic loss. In: Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, University of California Press 1961, pp. 361-379.
MR 0133191
[10] Hansen, B. E.:
The risk of James-Stein and Lasso shrinkage. Econometric Rev. 35 (2015), 456-470.
MR 3511027
[11] Saleh, A. K. Md. E.:
Theory of Preliminary test and Stein-Type Estimators with Applications. John Wiley and Sons, New York 2006.
DOI 10.1002/0471773751 |
MR 2218139
[12] Saleh, A. K. Md. E., Arashi, M., Norouzirad, M., Kibria, B. M. G.:
On shrinkage and selection: ANOVA MODEL. J. Statist. Res. 51 (2017), 165-191.
MR 3753200
[13] Stein, C.:
Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proc. Third Berkeley Symposium on Mathematical Statistics and Probability, University of California Press 1956, pp. 197-206.
MR 0084922
[15] Tikhonov, A. N.:
Solution of incorrectly formulated problems and the regularization method. Doklady Akademii Nauk SSSR 151 (1963), 501-504.
MR 0162377