Previous |  Up |  Next

Article

Keywords:
weakly-supplemented subgroup; $p$-nilpotent group; supersolvable group
Summary:
A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$. In the paper, we extend one main result of Kong and Liu (2014).
References:
[1] Arad, Z., Ward, M. B.: New criteria for the solvability of finite groups. J. Algebra 77 (1982), 234-246. DOI 10.1016/0021-8693(82)90288-5 | MR 0665175 | Zbl 0486.20018
[2] Hall, P.: A characteristic property of soluble groups. J. Lond. Math. Soc. 12 (1937), 198-200. DOI 10.1112/jlms/s1-12.2.198 | MR 1575073 | Zbl 0016.39204
[3] Hall, P.: Complemented groups. J. Lond. Math. Soc. 12 (1937), 201-204. DOI 10.1112/jlms/s1-12.2.201 | MR 1575074 | Zbl 0016.39301
[4] Kong, Q., Liu, Q.: The influence of weakly-supplemented subgroups on the structure of finite groups. Czech. Math. J. 64 (2014), 173-182. DOI 10.1007/s10587-014-0092-y | MR 3247453 | Zbl 1321.20021
[5] Li, D., Guo, X.: The influence of $c$-normality of subgroups on the structure of finite groups II. Commun. Algebra 26 (1998), 1913-1922. DOI 10.1080/00927879808826248 | MR 1621704 | Zbl 0906.20012
Partner of
EuDML logo