Previous |  Up |  Next

Article

Keywords:
analytic function; tubular domain; embedding theorem
Summary:
We obtain new sharp embedding theorems for mixed-norm Herz-type analytic spaces in tubular domains over symmetric cones. These results enlarge the list of recent sharp theorems in analytic spaces obtained by Nana and Sehba (2015).
References:
[1] Abate, A., Raissy, J., Saracco, A.: Toeplitz operators and Carleson measures in strongly pseudoconvex domains. J. Funct. Anal. 263 (2012), 3449-3491. DOI 10.1016/j.jfa.2012.08.027 | MR 2984073 | Zbl 1269.32003
[2] Abate, M., Saracco, A.: Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains. J. Lond. Math. Soc., II. Ser. 83 (2011), 587-605. DOI 10.1112/jlms/jdq092 | MR 2802500 | Zbl 1227.32008
[3] Bekolle, D., Bonami, A., Garrigos, G., Nana, C., Peloso, M., Ricci, F.: Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint. IMHOTEP J. Afr. Math. Pures Appl. 5 (2004), 75 pages. MR 2244169 | Zbl 1286.32001
[4] Bekolle, D., Bonami, A., Garrigos, G., Ricci, F.: Littlewood-Paley decompositions related to symmetric cones and Bergman projections in tube domains. Proc. Lond. Math. Soc., III. Ser. 89 (2004), 317-360. DOI 10.1112/S0024611504014765 | MR 2078706 | Zbl 1079.42015
[5] Bekolle, D., Bonami, A., Garrigos, G., Ricci, F., Sehba, B.: Analytic Besov spaces and Hardy-type inequalities in tube domains over symmetric cones. J. Reine Angew. Math. 647 (2010), 25-56. DOI 10.1515/CRELLE.2010.072 | MR 2729357 | Zbl 1243.42035
[6] Bekolle, D., Sehba, B., Tchoundja, E.: The Duren-Carleson theorem in tube domains over symmetric cones. Integral Equations Oper. Theory 86 (2016), 475-494. DOI 10.1007/s00020-016-2336-8 | MR 3578037 | Zbl 1372.32011
[7] Carleson, L.: Interpolations by bounded analytic functions and the corona problem. Ann. Math. 76 (1962), 547-559. DOI 10.2307/1970375 | MR 0141789 | Zbl 0112.29702
[8] Cima, J. A., Mercer, P. R.: Composition operators between Bergman spaces on convex domains in $\mathbb{C}^n$. J. Oper. Theory 33 (1995), 363-369. MR 1354986 | Zbl 0840.47025
[9] Cima, J. A., Wogen, W. R.: A Carleson measure theorem for the Bergman space on the ball. J. Oper. Theory 7 (1982), 157-165. MR 0650200 | Zbl 0499.42011
[10] Duren, P. L.: Extension of a theorem of Carleson. Bull. Am. Math. Soc. 75 (1969), 143-146. DOI 10.1090/S0002-9904-1969-12181-6 | MR 0241650 | Zbl 0184.30503
[11] Gheorghe, L. G.: Interpolation of Besov spaces and applications. Matematiche 55 (2000), 29-42. MR 1888995 | Zbl 1009.46008
[12] Hastings, W. W.: A Carleson measure theorem for Bergman spaces. Proc. Am. Math. Soc. 52 (1975), 237-241. DOI 10.2307/2040137 | MR 0374886 | Zbl 0296.31009
[13] Kaptanoğlu, H. T.: Carleson measures for Besov spaces on the ball with applications. J. Funct. Anal. 250 (2007), 483-520. DOI 10.1016/j.jfa.2006.12.016 | MR 2352489 | Zbl 1135.46014
[14] Li, S., Shamoyan, R.: On some estimates and Carleson type measure for multifunctional holomorphic spaces in the unit ball. Bull. Sci. Math. 134 (2010), 144-154. DOI 10.1016/j.bulsci.2008.04.003 | MR 2592966 | Zbl 1187.32003
[15] Luecking, D.: A technique for characterizing Carleson measures on Bergman spaces. Proc. Am. Math. Soc. 87 (1983), 656-660. DOI 10.2307/2043353 | MR 0687635 | Zbl 0521.32005
[16] Nana, C., Sehba, B. F.: Carleson embeddings and two operators on Bergman spaces of tube domains over symmetric cones. Integral Equations Oper. Theory 83 (2015), 151-178. DOI 10.1007/s00020-014-2210-5 | MR 3404692 | Zbl 1326.32018
[17] Nana, C., Sehba, B.: Toeplitz and Hankel operators from Bergman to analytic Besov spaces of tube domains over symmetric cones. Avaible at https://arxiv.org/abs/1508.05819 MR 3851374
[18] Oleĭnik, V. L.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 9 (1978), 228-243. DOI 10.1007/BF01578546 | Zbl 0396.31001
[19] Oleĭnik, V. L., Pavlov, B. S.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 2 (1974), 135-142. DOI 10.1007/BF01099672 | MR 0369705 | Zbl 0278.46032
[20] Sehba, B. F.: Hankel operators on Bergman spaces of tube domains over symmetric cones. Integral Equations Oper. Theory 62 (2008), 233-245. DOI 10.1007/s00020-008-1620-7 | MR 2447916 | Zbl 1198.47047
[21] Sehba, B. F.: Bergman-type operators in tubular domains over symmetric cones. Proc. Edinb. Math. Soc., II. Ser. 52 (2009), 529-544. DOI 10.1017/S0013091506001593 | MR 2506404 | Zbl 1168.42011
[22] Shamoyan, R. F., Mihić, O. R.: On some new sharp embedding theorems in minimal and pseudoconvex domains. Czech. Math. J. 66 (2016), 527-546. DOI 10.1007/s10587-016-0273-y | MR 3519619 | Zbl 06604484
[23] Yamaji, S.: Composition operators on the Bergman spaces of a minimal bounded homogeneous domain. Hiroshima Math. J. 43 (2013), 107-127. DOI 10.32917/hmj/1368217952 | MR 3066527 | Zbl 1304.47034
[24] Yamaji, S.: Positive Toeplitz operators on weighted Bergman spaces of a minimal bounded homogeneous domain. J. Math. Soc. Japan 64 (2013), 1101-1115. DOI 10.2969/jmsj/06541101 | MR 3127818 | Zbl 1284.47025
[25] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226, Springer, New York (2005). DOI 10.1007/0-387-27539-8 | MR 2115155 | Zbl 1067.32005
Partner of
EuDML logo