[1] Boyd, S., Ghaoui, L. E., Feron, E., Balakrishnam, V.:
Linear Matrix Inequality in System and Control. SIAM, Philadelphia, 1994.
DOI 10.1137/1.9781611970777
[2] Cao, J. D., Chen, G. R., Li, P.:
Global synchronization in an array of delayed neural networks with hybrid coupling. IEEE Trans. Syst. Man Cybern. B 38 (2008), 2, 488-498.
DOI 10.1109/tsmcb.2007.914705
[3] Chen, X. F., Song, Q. K.:
Global stability of complex-valued neural networks with both leakage time delay and discrete time delay on time scales. Neurocomputing 121 (2013), 254-264.
DOI 10.1016/j.neucom.2013.04.040
[4] Ding, X. S., Cao, J. D., Alsaedi, A., Alsaadi, F. E., Hayat, T.:
Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions. Neural Netw. 90 (2017), 42-55.
DOI 10.1016/j.neunet.2017.03.006
[6] Fang, T., Sun, J. T.:
Further investigate the stability of complex-valued recurrent neural networks with time-delays. IEEE Trans. Neural Netw. Learn. Syst. 25 (2014), 9, 1709-1713.
DOI 10.1109/tnnls.2013.2294638 |
MR 3453740
[7] Fang, T., Sun, J. T.:
Stability of complex-valued impulsive and switching system and application to the Lu system. Nonlinear Anal. Hybrid Syst. 14 (2014), 38-46.
DOI 10.1016/j.nahs.2014.04.004 |
MR 3228049
[8] Feng, J. E., Xu, S. Y., Zou, Y.:
Delay-dependent stability of neutral type neural networks with distributed delays. Neurocomputing 72 (2009), 10-12, 2576-2580.
DOI 10.1016/j.neucom.2008.10.018
[9] Forti, M., Tesi, A.:
New conditions for global stability of neural networks with application to linear and quadratic programming problems. IEEE Trans. Circuits Syst. I 42 (1995), 354-366.
DOI 10.1109/81.641813 |
MR 1351871
[10] Gong, W. Q., Liang, J. L., Zhang, C. J., Cao, J. D.:
Nonlinear measure approach for the stability analysis of complex-valued neural networks. Neural Process. Lett. 44 (2015), 539-554.
DOI 10.1007/s11063-015-9475-9
[11] Guo, R. N., Zhang, Z. Y., Liu, X. P., Lin, C.:
Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays. Appl. Math. Comput. 311 (2017), 100-117.
DOI 10.1016/j.amc.2017.05.021 |
MR 3658062
[13] Hirose, A.:
Recent progress in applications of complex-valued neural networks. In: Artif. Intell. Soft. Comput. II, Vol. 6114 (L. Rutkowski et al., eds.), Springer, New York 2010, pp. 42-46.
DOI 10.1007/978-3-642-13232-2\_6
[14] Hu, J., Wang, J.:
Global stability of complex-valued recurrent neural networks with time-delays. IEEE Trans. Neural Netw. Learn. Syst. 23 (2012), 6, 853-865.
DOI 10.1109/tnnls.2012.2195028 |
MR 3453740
[15] Liao, X. F., Liu, Y. L., Wang, H. W., Huang, T. W.:
Exponential estimates and exponential stability for neutral-type neural networks with multiple delays. Neurocomputing 149 (2015), 868-883.
DOI 10.1016/j.neucom.2014.07.048 |
MR 3593044
[16] Liu, X. W., Chen, T. P.:
Global Exponential stability for complex-valued recurrent neural networks with asynchronous time delays. IEEE Trans. Neural Netw. Learn. Syst. 27 (2016), 3, 593-606.
DOI 10.1109/tnnls.2015.2415496 |
MR 3465659
[17] Pan, J., Liu, X. Z., Xie, W. C.:
Exponential stability of a class of complex-valued neural networks with time-varying delays. Neurocomputing 164 (2015), 293-299.
DOI 10.1016/j.neucom.2015.02.024
[18] Orman, Z.:
New sufficient conditions for global stability of neutral-type neural networks with time delays. Neurocomputing 97 (2012), 141-148.
DOI 10.1016/j.neucom.2012.05.016
[19] Patan, K.:
Stability analysis and the stabilization of a class of discrete-time dynamic neural networks. IEEE Trans. Neural Netw. 18 (2007), 3, 660-673.
DOI 10.1109/tnn.2007.891199
[20] Park, J. H., Kwon, O. M.:
Further results on state estimation for neural networks of neutral-type with time-varying delay. Appl. Math. Comput. 208 (2009), 1, 69-75.
DOI 10.1016/j.amc.2008.11.017 |
MR 2490770
[21] Park, J. H., Kwon, O. M., Lee, S. M.:
LMI optimization approach on stability for delayed neural networks of neutral-type. Appl. Math. Comput. 196 (2008), 1, 236-244.
DOI 10.1016/j.amc.2007.05.047 |
MR 2382607
[22] Park, J. H., Park, C. H., Kwon, O. M., Lee, S. M.:
A new stability criterion for bidirectional associative memory neural networks of neutral-type. Appl. Math. Comput. 199 (2008), 2, 716-722.
DOI 10.1016/j.amc.2007.10.032 |
MR 2420599
[23] Shi, K. B., Zhong, S. M., Zhu, H., Liu, X. Z., Zeng, Y.:
New delay-dependent stability criteria for neutral-type neural networks with mixed random time-varying delays. Neurocomputing 168 (2015), 896-907.
DOI 10.1016/j.neucom.2015.05.035 |
MR 3402310
[24] Shu, Y.J., Liu, X.G., Wang, F.X., Qiu, S.B.:
Further results on exponential stability of discrete-time BAM neural networks with time-varying delays. Math. Method. Appl. Sci. 40 (2017), 11, 4014-4027.
DOI 10.1002/mma.4281 |
MR 3668827
[25] Song, Q. K.:
Synchronization analysis of coupled connected neural networks with mixed time delays. Neurocomputing 72 (2009), 3907-3914.
DOI 10.1016/j.neucom.2009.04.009
[26] Song, Q. K., Shu, H. Q., Zhao, Z. J., Liu, Y. R., Alsaadi, F. E.:
Lagrange stability analysis for complex-valued neural networks with leakage delay and mixed time-varying delays. Neurocomputing 244 (2017), 33-41.
DOI 10.1016/j.neucom.2017.03.015
[27] Song, Q. K., Yan, H., Zhao, Z. J., Liu, Y. R.:
Global exponential stability of impulsive complex-valued neural networks with both asynchronous time-varying and continuously distributed delays. Neural Netw. 81 (2016), 1-10.
DOI 10.1016/j.neunet.2016.04.012
[28] Song, Q. K., Zhao, Z. J., Liu, Y. R.:
Stability analysis of complex-valued neural networks with probabilistic time-varying delays. Neurocomputing 159 (2015), 96-104.
DOI 10.1016/j.neucom.2015.02.015
[29] Subramanian, K., Muthukumar, P.:
Global asymptotic stability of complex-valued neural networks with additive time-varying delays. Cogn. Neurodynamics 11 (2017), 3, 293-306.
DOI 10.1007/s11571-017-9429-1
[30] Tan, M. C.:
Global asymptotic stability of fuzzy cellular neural networks with unbounded distributed delays. Neural Process. Lett. 31 (2010), 2, 147-157.
DOI 10.1007/s11063-010-9130-4
[31] Tan, M. C.:
Stabilization of coupled time-delay neural networks with nodes of different dimensions. Neural Process. Lett. 43 (2016), 1, 255-268.
DOI 10.1007/s11063-015-9416-7
[32] Tan, Y. X., Jing, K.:
Existence and global exponential stability of almost periodic solution for delayed competitive neural networks with discontinuous activations. Math. Method. Appl. Sci. 39 (2016), 11, 2821-2839.
DOI 10.1002/mma.3732 |
MR 3512733
[33] Tan, M. C., Xu, D. S.:
Multiple $\mu$-stability analysis for memristor-based complex-valued neural networks with nonmonotonic piecewise nonlinear activation functions and unbounded time-varying delays. Neurocomputing 275 (2018), 2681-2701.
DOI 10.1016/j.neucom.2017.10.038
[34] Tan, M. C., Zhang, Y. N.:
New sufficient conditions for global asymptotic stability of Cohen-Grossberg neural networks with time-varying delays. Nonlinear Anal. Real World Appl. 10 (2009), 2139-2145.
DOI 10.1016/j.nonrwa.2008.03.022 |
MR 2508424
[35] Tian, X. H., Xu, R.:
Stability and Hopf bifurcation of a delayed Cohen-Grossberg neural network with diffusion. Math. Method. Appl. Sci. 40 (2017), 1, 293-305.
DOI 10.1002/mma.3995 |
MR 3583055
[36] Tu, Z. W., Cao, J. D., Alsaedi, A., Alsaadi, F. E., Hayat, T.:
Global lagrange stability of complex-valued neural networks of neutral type with time-varying delays. Complexity 21 (2016), S2, 438-450.
DOI 10.1002/cplx.21823 |
MR 3583097
[37] Wang, H. M., Duan, S. K., Huang, T. W., Wang, L. D., Li, C. D.:
Exponential stability of complex-valued memristive recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28 (2017), 3, 766-771.
DOI 10.1109/TNNLS.2015.2513001 |
MR 3730910
[38] Wang, Z. Y., Huang, L. H.:
Global stability analysis for delayed complex-valued BAM neural networks. Neurocomputing 173 (2016), 2083-2089.
DOI 10.1016/j.neucom.2015.09.086
[39] Wang, P., Li, Y. K., Ye, Y.:
Almost periodic solutions for neutral-type neural networks with the delays in the leakage term on time scales. Math. Method. Appl. Sci. 39 (2016), 15, 4297-4310.
DOI 10.1002/mma.3857 |
MR 3549393
[40] Wang, L., Xie, Y., Wei, Z., Peng, J.:
Stability analysis and absolute synchronization of a three-unit delayed neural network. Kybernetika 51 (2015), 5, 800-813.
DOI 10.14736/kyb-2015-5-0800 |
MR 3445985
[41] Xie, J., Kao, Y. G., Park, J.H.:
$H_\infty$ performance for neutral-type Markovian switching systems with general uncertain transition rates via sliding mode control method. Nonlinear Anal. Hybrid Syst. 27 (2018), 416-436.
DOI 10.1016/j.nahs.2017.10.002 |
MR 3729580
[42] Xu, C. J., Li, P. L., Pang, Y. C.:
Existence and exponential stability of almost periodic solutions for neutral-type BAM neural networks with distributed leakage delays. Math. Method. Appl. Sci. 40 (2017), 6, 2177-2196.
DOI 10.1002/mma.4132 |
MR 3624090
[43] Xu, X. H., Zhang, J. Y., Shi, J. Z.:
Exponential stability of complex-valued neural networks with mixed delays. Neurocomputing 128 (2014), 483-490.
DOI 10.1016/j.neucom.2013.08.014
[44] Zhang, H. G., Gong, D. W., Wang, Z. S.:
Synchronization criteria for an array of neutral-type neural networks with hybrid coupling: a novel analysis approach. Neural Process. Lett. 35 (2012), 1, 29-45.
DOI 10.1007/s11063-011-9202-0
[45] Zhang, Z. Y., Liu, X. P., Chen, J., Guo, R. N., Zhou, S. W.:
Further stability analysis for delayed complex-valued recurrent neural networks. Neurocomputing 251 (2017), 81-89.
DOI 10.1016/j.neucom.2017.04.013
[46] Zhang, Z. Y., Lin, C., Chen, B.:
Global stability criterion for delayed complex-valued recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25 (2014), 9, 1704-1708.
DOI 10.1109/tnnls.2013.2288943
[47] Zhang, Z. Q., Yu, S. H.:
Global asymptotic stability for a class of complex-valued Cohen-Grossberg neural networks with time delays. Neurocomputing 171 (2016), 1158-1166.
DOI 10.1016/j.neucom.2015.07.051
[48] Zeng, X., Li, C. D., Huang, T. W., He, X.:
Stability analysis of complex-valued impulsive systems with time delay. Appl. Math. Comput. 256 (2015), 75-82.
DOI 10.1016/j.amc.2015.01.006 |
MR 3316049
[49] Zheng, C. D., Shan, Q. H., Zhang, H. G.:
On stabilization of stochastic Cohen-Grossberg neural networks with mode-dependent mixed time-delays and Markovian switching. IEEE Trans. Neural Netw. Learn. Syst. 24 (2013), 800-811.
DOI 10.1109/tnnls.2013.2244613