Previous |  Up |  Next

Article

Keywords:
intersection ideal ${\mathcal{M}}\cap {\mathcal{N}}$; null additive set; meager additive set
Summary:
We prove in ZFC that every ${\mathcal{M}}\cap {\mathcal{N}}$ additive set is ${\mathcal{N}}$ additive, thus we solve Problem 20 from paper [Weiss T., {A note on the intersection ideal ${\mathcal{M}}\cap {\mathcal{N}}$}, Comment. Math. Univ. Carolin. {54} (2013), no. 3, 437-445] in the negative.
References:
[1] Bartoszyński T.: Remarks on small sets of reals. Proc. Amer. Math. Soc 131 (2003), no. 2, 625–630. DOI 10.1090/S0002-9939-02-06567-X | MR 1933355
[2] Bartoszyński T., Judah H.: Set Theory. On the Structure of the Real Line. A K Peters, Wellesley, 1995. MR 1350295
[3] Goldstern M., Kellner J., Shelah S., Wohofsky W.: Borel conjecture and dual Borel conjecture. Trans. Amer. Math. Soc. 366 (2014), no. 1, 245–307. DOI 10.1090/S0002-9947-2013-05783-2 | MR 3118397
[4] Orenshtein T., Tsaban B.: Linear $\sigma$-additivity and some applications. Trans. Amer. Math. Soc. 363 (2011), no. 7, 3621–3637. DOI 10.1090/S0002-9947-2011-05228-1 | MR 2775821
[5] Pawlikowski J.: A characterization of strong measure zero sets. Israel J. Math. 93 (1996), 171–183. DOI 10.1007/BF02761100 | MR 1380640 | Zbl 0857.28001
[6] Weiss T.: A note on the intersection ideal ${\mathcal{M}}\cap {\mathcal{N}}$. Comment. Math. Univ. Carolin. 54 (2013), no. 3, 437–445. MR 3090421
Partner of
EuDML logo