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More remarks on the intersection ideal M∩ N

Tomasz Weiss

Abstract. We prove in ZFC that every M∩N additive set is N additive, thus we
solve Problem 20 from paper [Weiss T., A note on the intersection ideal M∩N ,
Comment. Math. Univ. Carolin. 54 (2013), no. 3, 437–445] in the negative.
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Introduction. In this paper, we continue our considerations (see [6]) of sets
belonging to the intersection idealM∩N in terms of their translations.

Suppose that “+” is the standard modulo 2 coordinatewise addition in 2ω, and
I, J are σ-ideals of subsets of 2ω with I ⊆ J .

Definition 1. We say that X ⊆ 2ω is I additive, or X ∈ I∗, if and only if
X + A = {x + a : x ∈ X, a ∈ A} ∈ I for any set A ∈ I, and X ∈ (I, J)∗ if and
only if for every set A ∈ I, X +A ∈ J .

The σ-ideal of meager subsets of 2ω is denoted by M, N is the σ-ideal of
measure zero subsets of 2ω, and E denotes the σ-ideal generated by Fσ measure
zero subsets of 2ω. It is well-known that E is strictly contained in the intersection
ideal M∩N . The following diagram of inclusions holds, where “→” stands for
the inclusion and crossed arrow “ 6←” means that the reverse inclusion cannot be
proved in ZFC (Zermelo–Fraenkel set theory). See Proposition 19 in [6].

(E ,M)∗

✥❥❥❥❥
uu❥❥❥❥

✕ //

❯

��

SFCoo

N ∗

?

// (M∩N )∗oo // E∗=M∗
✕oo // (E ,M∩N )∗✕oo

55❥❥❥❥❥❥❥

))❚❚❚❚❚❚❚❚

(E ,N )∗
✟❚❚❚❚

ii❚❚❚❚

❯

OO

= SMZ

Recall that SMZ = {X ⊆ 2ω : for every A ∈ M, X + A 6= 2ω}, and SFC =
{X ⊆ 2ω : for every B ∈ N , X +B 6= 2ω}.

Question 2 (Problem 20 in [6]). Is it consistent with ZFC that the class (M∩N )∗

contains sets that are not in N ∗?
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Main theorems. We begin with the answer to Question 2 which is surprisingly
negative.

Theorem 3. (M∩N )∗ ⊆ N ∗.

To prove this theorem we apply the following sequence of lemmas. The first
one is Lemma 0 in [5].

Lemma 4. Let m ≥ n + 2nk, k,m, n ∈ ω. Then there exists T ⊆ 2m with

measure µ(T ) = 2−k such that for all 〈σi, τi〉 ∈ 2n× 2[n,m), i ∈ I, with σi distinct

the sets T + 〈σi, τi〉 are stochastically independent.

Lemma 5 (Theorem 23 in [6]). (M∩N ,M)∗ ⊆ E∗ =M∗.

Proof of Theorem 3: We combine the procedures of (♠) in [5], Theorem 2.7.18
in [2] and Lemma 5 above.

Suppose that X ∈ (M∩N )∗, and an increasing f ∈ ωω is such that f(n+1) ≥
f(n) + n for every n ∈ ω. By Lemma 5 the set X is meager additive and by the
Bartoszyński–Judah–Shelah characterization (see Theorem 2.7.17 from [2]), there
are an increasing g ∈ ωω and y ∈ 2ω, so that

X ⊆ {x ∈ 2ω : ∃m ∀n ≥ m ∃k (g(n) ≤ f(k) < f(k + 1) ≤ g(n+ 1) and

x ↾ [f(k), f(k + 1)) = y ↾ [f(k), f(k + 1)))}.

Assume without loss of generality that g is sufficiently fast increasing and put
an = g(2n), bn = g(2n + 1) for n ∈ ω. From now on, each number bi − ai and
ai+1− bi will play the role of n and m−n, respectively, from Lemma 4. Each set
Ti with µ(Ti) = 1/2i and used in the expression below plays the role of a set T
which appears in Lemma 4. Let A =

⋂
m∈ω

⋃
n≥m An, where for n ∈ ω,

An = {x ∈ 2ω : x ↾ [an, an+1) ∈ Tn}.

Since µ(An) = 1/2n for n ∈ ω, we have that µ(A) = 0. Suppose that h ∈ 2ω is
such that

A′ = A ∩ {x ∈ 2ω : ∃m ∀n ≥ m x ↾ [an, an+1) 6= h ↾ [an, an+1)}

is nonempty. Notice that the second set in the above formula is meager (see
Theorem 2.2.4 in [2]), thus A′ ∈ M∩N , and by the assumption X +A′ ∈ N .

Let G ⊆ 2ω, µ(G) < 1, be an open set such that X + A′ ⊆ G, and suppose
that for every τ ∈ 2<ω, [τ ] is the basic clopen set {x ∈ 2ω : τ ⊆ x}. Since we can
delete from 2ω \G every set [τ ] which satisfies µ([τ ]\G) = 0, we may assume that
for each basic clopen set [τ ], [τ ] 6⊆ G, we have that µ([τ ] \G) > 0. By De Morgan
law ⋂

x∈X

((x+ (2ω \A)) ∪ (x+B)) ⊇ [τ ] \G,

where
B = {x ∈ 2ω : ∀m ∃n ≥ m x ↾ [an, an+1) = h ↾ [an, an+1)}.
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It is easy to see that
⋂

x∈X

((x+ (2ω \A)) ∪ (x+B)) ⊆
⋂

x∈X

(x+ (2ω \A)) ∪
⋃

x∈X

(x+ B).

We show that the union at the end of the above expression is a null set.

Fact 6. X +B is of measure zero.

Proof: Notice that X +B ⊆
⋂

m∈ω

⋃
n≥m Cn, where for n ∈ ω,

Cn = {x ∈ 2ω : ∃k (g(n) ≤ f(k) < f(k + 1) ≤ g(n+ 1) and

x ↾ [f(k), f(k + 1)) = y ↾ [f(k), f(k + 1)))}

+ {x ∈ 2ω : x ↾ [g(n), g(n+ 1)) = h ↾ [g(n), g(n+ 1))}

⊆
⋃

k : g(n)≤f(k)<f(k+1)≤g(n+1)

{x ∈ 2ω : x ↾ [f(k), f(k + 1)) = y ↾ [f(k), f(k + 1))}

+ {x ∈ 2ω : x ↾ [f(k), f(k + 1)) = h ↾ [f(k), f(k + 1))}.

Clearly,
∑

n∈ω

µ(Cn) <∞. This finishes the proof of Fact 6. �

By Fact 6 for each basic clopen [τ ], [τ ] 6⊆ G, there is aτ ⊆ [τ ] \ G such that
µ(aτ ) > 0, and

aτ ⊆
⋂

x∈X

(x+ (2ω \A)).

This implies that for every such aτ we have that
( ⋃

x∈X

(x+A)

)
∩ aτ = ∅.

We now follow the main argument and the notation from (♠) in [5]. By earlier
remarks we have that for every x ∈ X and every basic clopen set [τ ], [τ ] 6⊆ G,

( ⋂

m∈ω

⋃

n≥m

(x+An)

)
∩ aτ = ∅.

By applying the Baire category theorem in 2ω \ G for each x ∈ X one can find
mx ∈ ω and a basic clopen τx, [τx] 6⊆ G such that
( ⋃

n≥mx

(x+An)

)
∩ aτx = ∅, or equivalently aτx ⊆

⋂

n≥mx

(x+ (2ω \An)).

Define for n ∈ ω and [τ ] 6⊆ G

Kτ
n = {x ↾ [an, bn) : x ∈ X, and (x+An) ∩ aτ = ∅}.

It is clear that for every x ∈ X , x ↾ [an, bn) ∈ Kτx
n , where n ≥ mx.
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Let {xτ
k,n : k < |Kτ

n|} be a list of all x’s such that x ↾ [an, bn) are distinct and
give the entire set Kτ

n. We have

aτ ⊆
⋂

n∈ω

(
2ω \

⋃

k<|Kτ

n
|

(xτ
k,n +An)

)

thus by the stochastic independence condition from Lemma 4 above this implies
that ∏

n∈ω

(
1−

1

2n

)|Kτ

n
|

> 0.

Hence ∑

n∈ω

|Kτ
n|

2n
<∞.

For each τ , [τ ] 6⊆ G, let n(τ) be such that |Kτ
n| ≤ 2n for n ≥ n(τ). Let {τn} be

a list of all τ ’s which satisfy [τ ] 6⊆ G. Define for every n ∈ ω

Dn =
⋃

m<n

{Kτm
n : τm is such that n(τm) ≤ n}.

Clearly, |Dn| ≤ n2n for n ∈ ω. This shows that there exists a sequence {Dn}n∈ω

with Dn ⊆ 2[an,bn) and |Dn| ≤ n2n for n ∈ ω such that for each x ∈ X and almost
every n ∈ ω

x ↾ [an, bn) ∈ Dn.

Notice that by using simultaneously the same procedure for intervals of the
form [bn, bn+1) we show that there is a sequence {D′

n}n∈ω with D′
n ⊆ 2 [bn,an+1)

and |D′
n| ≤ (n+1)2n+1 for n ∈ ω so that for each x ∈ X and almost every n ∈ ω

x ↾ [bn, an+1) ∈ D′
n.

To obtain this sequence we can choose the function g ∈ ωω at the beginning of the
proof of Theorem 3 sufficiently fast increasing, so that each interval [bn, an+1) is
“large enough” in comparison to [an, bn) (each number an+1−bn and bn+1−an+1

will play the role of n and m− n, respectively, from Lemma 4) and then we can

define the sets T̃n, T̃n ⊆ 2[bn,bn+1) for n ∈ ω, and Ã, Ã′ analogously to the sets
from the first part of the proof of Theorem 3. By Theorem 2.7.18.4 in [2] this
proves that X ∈ N ∗. �

According to the referees’ suggestions we consider two classes (M ∩ N ,N )∗

and (M∩N ,M)∗ which have not been explored before.

Proposition 7. (M∩N ,M)∗ 6−→ (M∩N ,N )∗.

Proof: See Theorem 22 in [6]. �

Question 8. (M∩N ,N )∗ → (M∩N ,M)∗?

In [6], the author asks the following question (see Problem 21 in [6]).
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Question 9. Is there a model of ZFC in which every element of the class (E ,M)∗

is at most countable?

Question 10 (B. Tsaban, personal communication). Does ZFC imply that there
is an uncountable X ⊆ 2ω such that X + F 6= 2ω for every F ∈ E?

Below we show that the positive answer to B. Tsaban’s question proves that
there is in ZFC a particularly small uncountable set, that is an uncountable
X ∈ (E ,M)∗. This solves Question 9 in the negative. By Theorem 2 in [1]
the following holds: if b = ℵ1, then there is X ⊆ 2ω, |X | = ℵ1, and X is meager
additive. In Theorem 3.6 from [4], the authors prove that under b = ℵ1, there
is an uncountable X ⊆ 2ω, |X | = ℵ1, with a stronger property than meager
additivity. For the other case (i.e. b > ℵ1) we use the following proposition.

Proposition 11. If X ⊆ 2ω, |X | < b, is such that X + F 6= 2ω for every F ∈ E ,
then X + F is meager for every F ∈ E .

Proof: Suppose that X + F 6= 2ω for a fixed F ∈ E . We may assume without
loss of generality that F +Q = F , where Q = {x ∈ 2ω : ∃m ∀n ≥ m x(n) = 0}.
Thus there is z0 ∈ 2ω such that

(z0 +Q) ∩ (X + F ) = ∅.
Hence

(z0 +Q) ∩

( ⋃

x∈X

(x + F )

)
= ∅.

Since z0 + Q is dense, and |X | < b, we can follow directly the implication
(5) ⇒ (1) from Lemma 2.2.6 in [2] and the arguments from Lemma 2.2.7 and
after Lemma 2.2.8 both in [2] to show that 2ω \

(⋃
x∈X(x+F )

)
contains a dense

Gδ set. �

Notice that the only property of a set F ∈ E that we use in the proof of
the above proposition is the assumption that it is an Fσ meager set. Thus we
essentially proved the following.

Corollary 12. If X ∈ SMZ and |X | < b, then X ∈M∗.

Proof: Clear. �

An example of a meager set X ∈ SMZ, |X | = b, which is not meager additive
is given in Theorem 10 from [6].

It was also pointed out by the referees that by earlier remarks and Proposi-
tion 11 a positive answer to Question 9 provides a negative answer to Question
10 which in turn implies the result Con(ZFC + Borel conjecture + dual Borel
conjecture) of the paper [3].

Acknowledgment. The author thanks the referees for many helpful suggestions.
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