Previous |  Up |  Next

Article

Keywords:
sum of signless Laplacian eigenvalues; upper bound; clique number; girth
Summary:
For a simple graph $G$ on $n$ vertices and an integer $k$ with $1\leq k\leq n$, denote by $\mathcal {S}_k^+(G)$ the sum of $k$ largest signless Laplacian eigenvalues of $G$. It was conjectured that $\mathcal {S}_k^+(G)\leq e(G)+{k+1 \choose 2}$, where $e(G)$ is the number of edges of $G$. This conjecture has been proved to be true for all graphs when $k\in \{1,2,n-1,n\}$, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all $k$). In this note, this conjecture is proved to be true for all graphs when $k=n-2$, and for some new classes of graphs.
References:
[1] Ashraf, F., Omidi, G. R., Tayfeh-Rezaie, B.: On the sum of signless Laplacian eigenvalues of a graph. Linear Algebra Appl. 438 (2013), 4539-4546. DOI 10.1016/j.laa.2013.01.023 | MR 3034549 | Zbl 1282.05087
[2] Bai, H.: The Grone-Merris conjecture. Trans. Am. Math. Soc. 363 (2011), 4463-4474. DOI 10.1090/S0002-9947-2011-05393-6 | MR 2792996 | Zbl 1258.05066
[3] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs. Universitext, Springer, Berlin (2012). DOI 10.1007/978-1-4614-1939-6 | MR 2882891 | Zbl 1231.05001
[4] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). DOI 10.1017/CBO9780511801518 | MR 2571608 | Zbl 1211.05002
[5] Du, Z., Zhou, B.: Upper bounds for the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl. 436 (2012), 3672-3683. DOI 10.1016/j.laa.2012.01.007 | MR 2900744 | Zbl 1241.05074
[6] Feng, L., Yu, G.: On three conjectures involving the signless Laplacian spectral radius of graphs. Publ. Inst. Math., Nouv. Sér. 85 (2009), 35-38. DOI 10.2298/PIM0999035F | MR 2536687 | Zbl 1265.05365
[7] Fritscher, E., Hoppen, C., Rocha, I., Trevisan, V.: On the sum of the Laplacian eigenvalues of a tree. Linear Algebra Appl. 435 (2011), 371-399. DOI 10.1016/j.laa.2011.01.036 | MR 2782788 | Zbl 1226.05154
[8] Ganie, H. A., Alghamdi, A. M., Pirzada, S.: On the sum of the Laplacian eigenvalues of a graph and Brouwer's conjecture. Linear Algebra Appl. 501 (2016), 376-389. DOI 10.1016/j.laa.2016.03.034 | MR 3485073 | Zbl 1334.05080
[9] Grone, R., Merris, R.: The Laplacian spectrum of a graph II. SIAM J. Discrete Math. 7 (1994), 221-229. DOI 10.1137/S0895480191222653 | MR 1271994 | Zbl 0795.05092
[10] Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B.: On the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl. 432 (2010), 2214-2221. DOI 10.1016/j.laa.2009.03.038 | MR 2599854 | Zbl 1218.05094
[11] Rocha, I., Trevisan, V.: Bounding the sum of the largest Laplacian eigenvalues of graphs. Discrete Appl. Math. 170 (2014), 95-103. DOI 10.1016/j.dam.2014.01.023 | MR 3176708 | Zbl 1288.05167
[12] Wang, S., Huang, Y., Liu, B.: On a conjecture for the sum of Laplacian eigenvalues. Math. Comput. Modelling 56 (2012), 60-68. DOI 10.1016/j.mcm.2011.12.047 | MR 2935294 | Zbl 1255.05118
[13] Yang, J., You, L.: On a conjecture for the signless Laplacian eigenvalues. Linear Algebra Appl. 446 (2014), 115-132. DOI 10.1016/j.laa.2013.12.032 | MR 3163132 | Zbl 1292.05182
Partner of
EuDML logo