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Abstract. For a simple graph G on n vertices and an integer k with 1 6 k 6 n, denote
by S+

k
(G) the sum of k largest signless Laplacian eigenvalues of G. It was conjectured that

S+
k
(G) 6 e(G) +

(k+1
2

)

, where e(G) is the number of edges of G. This conjecture has been
proved to be true for all graphs when k ∈ {1, 2, n − 1, n}, and for trees, unicyclic graphs,
bicyclic graphs and regular graphs (for all k). In this note, this conjecture is proved to be
true for all graphs when k = n− 2, and for some new classes of graphs.
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1. Introduction

All graphs considered in this note are finite, undirected and simple. Let G

be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G), and let

e(G) = |E(G)|. Denote by dG(vi) the degree of the vertex vi in G. The adja-

cency matrix of G is A(G) = [aij ]n×n, where aij = 1 if the vertices vi and vj
in G are adjacent, and aij = 0 otherwise. The Laplacian matrix and the signless

Laplacian matrix of G are, respectively, defined to be L(G) = D(G) − A(G) and

Q(G) = D(G) + A(G), where D(G) is the diagonal matrix of vertex degrees of G.

The eigenvalues of L(G) and Q(G), usually called the Laplacian eigenvalues and the

signless Laplacian eigenvalues of the graph G, are arranged (in non-increasing order)
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as µ1(G) > µ2(G) > . . . > µn(G) = 0 and q1(G) > q2(G) > . . . > qn(G) > 0,

respectively. It is known that if G is bipartite, then L(G) and Q(G) are similar, and

hence their eigenvalues are identical (see, e.g., [4], p. 217). For more details on the

Laplacian eigenvalues and the signless Laplacian eigenvalues of graphs one may refer

to [3], [4].

For an integer k with 1 6 k 6 n, let Sk(G) be the sum of k largest Laplacian eigen-

values of a graph G, that is, Sk(G) =
k
∑

i=1

µi(G). Grone and Merris [9] conjectured

that for any graph G with n vertices and each k ∈ {1, 2, . . . , n},

Sk(G) 6

k
∑

i=1

|{v ∈ V (G) : dG(v) >}|.

This conjecture has been proved to be true by Bai [2] recently and now is called

the Grone-Merris theorem. As a variation of the Grone-Merris theorem, Brouwer [3]

conjectured that for any graph G with n vertices and each k ∈ {1, 2, . . . , n},

Sk(G) 6 e(G) +

(

k + 1

2

)

.

Brouwer’s conjecture has attracted the attention of many researchers, but has not

been settled yet. For the progress on this conjecture one can see [5], [7], [8], [10],

[11], [12].

Analogously to the definition of Sk(G), let S+
k (G) be the sum of k largest signless

Laplacian eigenvalues of the graph G, that is, S+
k (G) =

k
∑

i=1

qi(G), k ∈ {1, 2, . . . , n}.
Motivated by Brouwer’s conjecture, Ashraf et al. [1] posed the following conjecture:

Conjecture 1.1. For any graph G with n vertices and each k ∈ {1, 2, . . . , n},

S+
k (G) 6 e(G) +

(

k + 1

2

)

.

By a computer search, Ashraf et al. [1] confirmed Conjecture 1.1 for all graphs

with at most 10 vertices. They also proved that Conjecture 1.1 is true for all graphs

when k ∈ {1, 2, n−1, n}, and for regular graphs (for all k). In addition, they pointed
out that Conjecture 1.1 holds for trees (for all k), since S+

k (G) = Sk(G) holds when G

is bipartite. Recently, Yang and You [13] further showed that Conjecture 1.1 is true

for unicyclic and bicyclic graphs (for all k).

In this note, we continue to explore Conjecture 1.1. We will show that Conjec-

ture 1.1 holds for all graphs when k = n− 2, and for some new classes of graphs.
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2. Lemmas and results

As usual, we denote byKn andK1, n−1 the complete graph and the star with n ver-

tices, respectively. Let G1 ∪ G2 denote the vertex-disjoint union of two graphs G1

and G2, and let kG denote the vertex-disjoint union of k copies of the graph G. For

a subgraph H of G, write G−E(H) for the spanning subgraph of G whose edge set

is E(G) \ E(H). The complement of G is denoted by G.

Lemma 2.1 ([4]). Let G be a graph with n > 2 vertices and let G′ be an edge-

deleted subgraph of G, that is, G′ = G − E(K2). Then q1(G) > q1(G
′) > q2(G) >

q2(G
′) > . . . > qn(G) > qn(G

′).

It is known that q1(Kn) = 2n−2 and q2(Kn) = . . . = qn(Kn) = n−2 (see, e.g., [1]).

This, together with Lemma 2.1, yields the next lemma.

Lemma 2.2. If G is a graph of order n > 2, then q1(G) 6 2n−2 and qi(G) 6 n−2

for i = 2, . . . , n.

For an n × n Hermitian matrix M , we arrange its eigenvalues (in non-increasing

order) as λ1(M) > λ2(M) > . . . > λn(M). The following result is the well-known

Courant-Weyl inequality (see, e.g., [4], p. 19).

Lemma 2.3 ([4]). IfA andB are n×n Hermitian matrices, then for n > i > j > 1,

λi(A+B) 6 λj(A) + λi−j+1(B).

The next result gives a relation between the signless Laplacian eigenvalues of G

and those of G, which can be deduced from Lemma 2.3 by bearing in mind that

Q(Kn) = Q(G) +Q(G) and qn(Kn) = n− 2.

Lemma 2.4. If G is a graph with n > 2 vertices and G is its complement, then

for i = 1, 2, . . . , n, qi(G) > n− 2− qn−i+1(G).

Lemma 2.5 ([13]). If G is a graph with n vertices and G1, G2, . . . , Gt are its edge-

disjoint subgraphs with E(G) =
t
⋃

i=1

E(Gi), then for any integer k with 1 6 k 6 n,

S+
k (G) 6

t
∑

i=1

S+
k (Gi), where S+

k (Gi) = S+
ni
(Gi) if k > |V (Gi)| = ni.

Lemma 2.6 ([13]). IfG is a connected graph with n vertices, then for any integer k

with

3n− 4 +
√

8n2(e(G) − n+ 1) + (n− 4)2

2n
6 k 6 n, S+

k (G) 6 e(G) +

(

k + 1

2

)

.
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It is shown [10], [12] that for any acyclic graph (i.e., tree or forest) F of order n,

Sk(F ) 6 e(F )+
(

k+1
2

)

holds for all k ∈ {1, 2, . . . , n}. This, together with the fact that
S+
k (G) = Sk(G) holds for any bipartite graph G, yields the following result directly.

Lemma 2.7. If F is an acyclic graph (i.e., tree or forest) with n > 2 vertices,

then for any integer k with 1 6 k 6 n, S+
k (F ) 6 e(F ) +

(

k+1
2

)

.

Lemma 2.8 ([6]). If G is a connected graph with n > 2 vertices, then q1(G) 6

2e(G)/(n− 1) + n− 2, with equality if and only if G ∼= K1,n−1, or G ∼= Kn.

Now, we are in position to present the main results of this note.

Theorem 2.9. For n > 3, let p be an integer with 1 6 p 6 n/3. If Conjecture 1.1

holds for all graphs when k = p, then Conjecture 1.1 holds for all graphs when

k = n− p as well.

P r o o f. Suppose that G is any graph with n > 3 vertices and G is its comple-

ment. The hypothesis of the theorem implies that

S+
p (G) 6 e(G) +

(

p+ 1

2

)

and S+
p (G) 6 e(G) +

(

p+ 1

2

)

.

We now just need to show that

S+
n−p(G) 6 e(G) +

(

n− p+ 1

2

)

.

Indeed, bearing in mind the well-known fact that
n
∑

i=1

qi(G) = 2e(G), we have

S+
n−p(G) = 2e(G)−

n
∑

i=n−p+1

qi(G)

6 2e(G)−
p

∑

i=1

(n− 2− qi(G)) (by Lemma 2.4)

= 2e(G)− p(n− 2) + S+
p (G)

6 2e(G)− p(n− 2) + e(G) +

(

p+ 1

2

)

= e(G) +

(

n

2

)

− p(n− 2) +

(

p+ 1

2

)

(as e(G) + e(G) =
(

n

2

)

)

= e(G) +
n2 − (2p+ 1)n+ p2 + 5p

2

6 e(G) +

(

n− p+ 1

2

)

(as n > 3p)

as desired. �
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It is known [1] that Conjecture 1.1 holds for all graphs when n 6 10 or k = 2.

This, together with Theorem 2.9, yields the following corollary, which asserts that

Conjecture 1.1 holds for all graphs when k = n− 2.

Corollary 2.10. IfG is a graph with n > 3 vertices, then S+
n−2(G) 6 e(G)+

(

n−1
2

)

.

It is also worth pointing out that Theorem 2.9 suggests that to prove Conjec-

ture 1.1, it is sufficient to prove Conjecture 1.1 for all graphs when 1 6 k 6 2n/3.

As an application of this idea, we may derive the following result, which, in some

sense, can be regarded as a partial solution to Conjecture 1.1.

Theorem 2.11. Let G be a graph with n > 3 vertices. If

e(G) >
(n− 1)(4n2 − 15n)

9(n− 3)
,

then S+
k (G) 6 e(G) +

(

k+1
2

)

holds for 1 6 k 6 2n/3.

P r o o f. For 1 6 k 6 2n/3, by Lemmas 2.2 and 2.8, we have

S+
k (G) 6

2e(G)

n− 1
+ n− 2 + (k − 1)(n− 2) 6 e(G) +

(

k + 1

2

)

,

provided that

(2.1) k2 − (2n− 5)k +
2(n− 3)

n− 1
e(G) > 0.

To complete this proof, we just need to prove that (2.1) holds for 1 6 k 6 2n/3 when

e(G) >
(n− 1)(4n2 − 15n)

9(n− 3)
.

Now, consider the quadratic equation

f(x) = x2 − (2n− 5)x+
2(n− 3)

n− 1
e(G) = 0,

with the discriminant being

∆ = (2n− 5)2 − 8(n− 3)

n− 1
e(G).

It is easy to see that if ∆ 6 0, that is,

e(G) >
(n− 1)(2n− 5)2

8(n− 3)

(

>
(n− 1)(4n2 − 15n)

9(n− 3)

)

,
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then f(x) > 0 holds for any real number x and hence, (2.1) follows. Otherwise, the

least root of f(x) = 0 is

α =
2n− 5−

√

(2n− 5)2 − 8(n−3)
n−1 e(G)

2
,

which shows that f(x) > 0 holds for x 6 α. Thus, (2.1) holds for 1 6 k 6 2n/3 if

2n− 5−
√

(2n− 5)2 − 8(n−3)
n−1 e(G)

2
>

2n

3
,

that is,

(2n− 15)2 > 9
[

(2n− 5)2 − 8(n− 3)

n− 1
e(G)

]

,

which follows when

e(G) >
(n− 1)(4n2 − 15n)

9(n− 3)
.

This completes the proof. �

Remark. By the above proof, one may draw a stronger conclusion (from a some-

what stronger assumption): for any graph G with n > 3 vertices, if

e(G) >
(n− 1)(2n− 5)2

8(n− 3)
,

then S+
k (G) 6 e(G) +

(

k+1
2

)

holds for 1 6 k 6 n; in other words, Conjecture 1.1

holds for the graphs with at least

(n− 1)(2n− 5)2

8(n− 3)

edges. In particular, a direct calculation shows that

(n− 1)(2n− 5)2

8(n− 3)
6

(

n

2

)

− (n− 2),

which implies that Conjecture 1.1 holds for the graphs obtained from Kn by deleting

at most n− 2 edges.

Recall that the clique number of a graph G, denoted by ω(G), is the number of

vertices of a maximum complete subgraph contained in G. By Theorem 2.11, we

may obtain the next corollary.

Corollary 2.12. Let G be a connected graph with n > 3 vertices. If ω(G) >

(2
√
2n− 1)/3, then S+

k (G) 6 e(G) +
(

k+1
2

)

holds for 1 6 k 6 2n/3.
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P r o o f. Note that for a connected graph G we have e(G) > 1
2ω(G)(ω(G)− 1)+

n− ω(G). Thus, by Theorem 2.11, it suffices to show that

1

2
ω(G)(ω(G)− 1) + n− ω(G) >

(n− 1)(4n2 − 15n)

9(n− 3)
,

that is,

9(n− 3)ω(G)2 − 27(n− 3)ω(G)− 4n(2n2 − 14n+ 21) > 0.

Consider the following quadratic equation:

h(x) = 9(n− 3)x2 − 27(n− 3)x− 4n(2n2 − 14n+ 21) = 0.

It is easy to check that the largest root of h(x) = 0 is

β =
9(n− 3) +

√

81(n− 3)2 + 16n(n− 3)(2n2 − 14n+ 21)

6(n− 3)
,

which shows that h(x) > 0 holds for x > β. Thus, to complete this proof, we just

need to prove that

9(n− 3) +
√

81(n− 3)2 + 16n(n− 3)(2n2 − 14n+ 21)

6(n− 3)
6

2
√
2n− 1

3
,

that is,

81(n− 3) + 16n(2n2 − 14n+ 21) 6 (n− 3)
(

4
√
2n− 11

)2
,

that is,
(

16− 11
√
2
)

n2 +
(

33
√
2− 37

)

n− 15 > 0,

which holds for n > 3 (since its largest root is 1.4543), completing the proof. �

Recall that the girth of a graph G (of order n), denoted by g(G), is the length

(i.e., the number of edges) of a shortest cycle contained in G. Clearly, 3 6 g(G) 6 n.

We here make a convention that a graph G is acyclic if and only if g(G) > n.

Theorem 2.13. If G is a graph with n vertices and n > g(G) > g > 4, then

S+
k (G) 6 e(G) +

(

k+1
2

)

holds for 1 6 k 6 ⌊g/4⌋.

P r o o f. Some idea of the proof comes from Lemma 15 in [1]. Let G be a coun-

terexample for the theorem having a minimum number of edges. Then we have

that

(2.2) S+
k (G) > e(G) +

(

k + 1

2

)

holds for some k with 1 6 k 6 ⌊g/4⌋.
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Note that G contains a cycle of length at least g and hence, it contains a subgraph

⌊g/2⌋K2 (belonging to the cycle) as well. It is easy to check that for 1 6 k 6 ⌊g/4⌋,

(2.3) S+
k (⌊g/2⌋K2) = 2k 6 ⌊g/2⌋ = e(⌊g/2⌋K2).

Now, let G′ = G−E(⌊g/2⌋K2). By Lemma 2.5, together with (2.2) and (2.3), we

obtain

e(G) +

(

k + 1

2

)

< S+
k (G) 6 S+

k (⌊g/2⌋K2) + S+
k (G′) 6 e(⌊g/2⌋K2) + S+

k (G′),

from which, as well as the fact that e(G′) = e(G)− e(⌊g/2⌋K2), we conclude that

(2.4) S+
k (G′) > e(G′) +

(

k + 1

2

)

holds for some k with 1 6 k 6 ⌊g/4⌋.
To complete the proof, it remains to be shown that n > g(G′) > g, which, together

with (2.4), would yield that G′ is also a counterexample for the theorem but has

fewer edges than G, contradicting the minimality of G. Indeed, on one hand, by the

definition of girth, we have g(G′) > g(G) > g. On the other hand, if g(G′) > n,

then G′ is acyclic and consequently, by Lemma 2.7, we have that S+
k (G′) 6 e(G′) +

(

k+1
2

)

holds for all k, contradicting (2.4).

This completes the proof. �

Theorem 2.14. Let G be a connected graph with n > 4 vertices. If

(2.5) g(G) > 6 + 2
√

8(e(G)− n+ 1) + 1,

then S+
k (G) 6 e(G) +

(

k+1
2

)

holds for 1 6 k 6 n.

P r o o f. Since G is connected, we have e(G)−n+1 > 0 and hence, by (2.5), we

obtain g(G) > 6. Consequently, for any integer k with 1 6 k 6 g(G)/4, Theorem 2.13

yields directly that S+
k (G) 6 e(G) +

(

k+1
2

)

. On the other hand, for g(G)/4 < k 6 n,

again by (2.5) we get

n > k >
g(G)

4
>

3n− 4 +
√

8n2(e(G)− n+ 1) + (n− 4)2

2n
,

which, together with Lemma 2.6, also yields that S+
k (G) 6 e(G)+

(

k+1
2

)

. Combining

these two cases, we obtain the desired result, completing the proof. �
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Remark. Theorem 2.14 asserts that Conjecture 1.1 holds for the connected

graphs having sufficiently large girth relative to the number of edges. Moreover,

recall that a connected graph with n vertices and c cycles, usually called a c-cyclic

graph, has n−1+c edges. We can now restate Theorem 2.14 as follows: if G a c-cyclic

graph with g(G) > 6 + 2
√
8c+ 1, then S+

k (G) 6 e(G) +
(

k+1
2

)

holds for 1 6 k 6 n,

from which one can easily conclude that Conjecture 1.1 is true for the 3-cyclic graphs

with girth at least 16, and for the 4-cyclic graphs with girth at least 18, and so on.

It should be mentioned that for the cases of c = 0, 1 and 2, the theorem still holds

when the restriction g(G) > 6 + 2
√
8c+ 1 is removed (see [1], [13] for details).
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