Previous |  Up |  Next

Article

Keywords:
exponential Yang-Mills field; energy gap
Summary:
In this paper, some inequalities of Simons type for exponential Yang-Mills fields over compact Riemannian manifolds are established, and the energy gaps are obtained.
References:
[1] Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. of Math. (2) 138 (1993), 213–242. MR 1230930
[2] Bourguignon, J.P., Lawson, H.B.: Stability and isolation phenomena for Yang-Mills fields. Comm. Math. Phys. 79 (2) (1981). DOI 10.1007/BF01942061 | MR 0612248
[3] Bourguignon, J.P., Lawson, H.B., Simons, J.: Stability and gap phenomena for Yang-Mills fields. Proc. Natl. Acad. Sci. USA 76 (1979). DOI 10.1073/pnas.76.4.1550 | MR 0526178 | Zbl 0408.53023
[4] Chen, Q., Zhou, Z.R.: On gap properties and instabilities of p-Yang-Mills fields. Canad. J. Math. 59 (6) (2007), 1245–1259. DOI 10.4153/CJM-2007-053-x | MR 2363065 | Zbl 1131.58010
[5] Dodziuk, J., Min-Oo, : An $L_{2}$-isolation theorem for Yang-Mills fields over complete manifolds. Compositio Math 47 (2) (1982), 165–169. MR 0677018
[6] Donaldson, S.K., Kronheimer, P.B.: The geometry of four-manifolds. Proceedings of Oxford Mathematical Monographs, The Clarendon Press, Oxford University Pres, Oxford Science Publications, New York, 1990. MR 1079726
[7] Feehan, P.M.N.: Energy gap for Yang-Mills connections, I: Four-dimensional closed Riemannian manifold. Adv. Math. 296 (2016), 55–84. DOI 10.1016/j.aim.2016.03.034 | MR 3490762
[8] Feehan, P.M.N.: Energy gap for Yang-Mills connections, II: Arbitrary closed Riemannian manifolds. Adv. Math. 312 (2017), 547–587. DOI 10.1016/j.aim.2017.03.023 | MR 3635819
[9] Gerhardt, C.: An energy gap for Yang-Mills connections. Comm. Math. Phys. 298 (2010), 515–522. DOI 10.1007/s00220-010-1073-0 | MR 2669447
[10] Hebey, E.: Sobolev spaces on Riemannian manifolds. Lecture Notes in Math., vol. 1635, Springer-Verlag Berlin Heidelberg, 1996. MR 1481970
[11] Min-Oo, : An $L_{2}$-isolation theorem for Yang-Mills fields. Compositio Math. 47 (2) (1982), 153–163. MR 0677017
[12] Shen, C.L.: The gap phenomena of Yang-Mills fields over the complete manifolds. Math. Z. 180 (1982), 69–77. DOI 10.1007/BF01214999 | MR 0656222
[13] Zhou, Z.R.: Inequalities of Simons type and gaps for Yang-Mills fields. Ann. Global Anal. Geom. 48 (3) (2015), 223–232. DOI 10.1007/s10455-015-9467-z | MR 3396465
[14] Zhou, Z.R.: Energy gaps for Yang-Mills fields. J. Math. Anal. Appl. 439 (2016), 514–522. DOI 10.1016/j.jmaa.2016.02.058 | MR 3475935
[15] Zhou, Z.R., Chen Qun, : Global pinching lemmas and their applications to geometry of submanifolds, harmonic maps and Yang-Mills fields. Adv. Math. 32 (1) (2003), 319–326. MR 2000989
Partner of
EuDML logo