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ENERGY GAPS FOR EXPONENTIAL YANG-MILLS FIELDS

Zhen-Rong Zhou

Abstract. In this paper, some inequalities of Simons type for exponential
Yang-Mills fields over compact Riemannian manifolds are established, and the
energy gaps are obtained.

1. Introduction

Let M be an m-dimensional Riemannian manifold, G an r0-dimensional Lie
group, E a Riemannian vector bundle over M with structure group G, gE ⊆ End(E)
the adjoint vector bundle, whose fiber type is g, the Lie algebra of G. We denote
the space of gE-valued p-forms by Ωp(gE). Let ∇ be a connection on E, then,
the curvature R∇ ∈ Ω2(gE) is defined by R∇X,Y = ∇X∇Y −∇Y∇X −∇[X,Y ] for
tangent vector fields X, Y on M .

Extend the connection ∇ into an exterior differential operator d∇ : Ωp(gE)→
Ωp+1(gE) as follows: for each ω ∈ Ωp(M) and σ ∈ Ω0(gE), let

d∇(ω ⊗ σ) = dω ⊗ σ + (−1)pω ∧∇σ ,

and extend to all members of Ωp(gE) by linearity.
When G is a subgroup of O(r0), the Killing form in g is negatively defined, and

hence induces an inner product in gE . This inner product and the Riemannian metric
of M define an inner product 〈·, ·〉 in Ωp(gE). The exterior differential operator
d∇ : Ωp(gE) → Ωp+1(gE) has a formal adjoint operator δ∇ : Ωp+1(gE) → Ωp(gE)
with respect to the L2-inner product (ϕ,ψ) =

∫
M
〈ϕ,ψ〉. Take a local orthonormal

frame field {e1, . . . , em} on M . Then, for any ϕ ∈ Ωp(E) and any local tangent
vector fields X0, X1, . . . , Xp to M , we have(

d∇ϕ
)
X0,X1,...,Xp

=
p∑
k=0

(−1)k (∇Xkϕ)X0,...,X̂k,...,Xp
,

(
δ∇ϕ

)
X1,...,Xp−1

=
m∑
k=1

(∇ekϕ)ek,X1,...,Xp−1
.
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The Laplacian acting on Ωp(gE) is defined by ∆∇ = d∇ ◦ δ∇ + δ∇ ◦ d∇ : Ωp(gE)→
Ωp(gE). If ϕ ∈ Ωp(gE) satisfies ∆∇ϕ = 0, we call it a harmonic p-form with values
in gE .

Let CE be the collection of all metric connections on E, and fix a connection
∇0 ∈ CE . Then, any connection ∇ ∈ CE can be expressed as ∇ = ∇0 +A, where
A ∈ Ω1(gE). The Yang-Mills functional is defined as: For ∇ ∈ CE ,

(1) S(∇) = 1
2

∫
M

|R∇|2 .

A connection ∇ ∈ CE is called is a a Yang-Mills connection, if it is a critical
point of the Yang-Mills functional, and the associated curvature tensor is called a
Yang-Mills field.

The Euler-Lagrange equation of the Yang-Mills functional S(·) can be written
as
(2) δ∇R∇ = 0 .
Hence, by Bianchi identity d∇R∇ = 0, a Yang-Mills field is a harmonic 2-form with
values in gE .

The following gap property for Yang-Mills fields is obtained in [2]:

Theorem 1. Let R∇ be a Yang-Mills field on Sm(m ≥ 5) satisfying that

‖R∇‖2
L∞ ≤

1
2

(m
2

)
,

then R∇ ≡ 0.

Denote the Riemannian curvature operator of M by R, the Ricci operator by
Ric. Let C = Ric ∧ I + 2R, where I is the identity transformation on TM , and
define the Ricci-Riemannian curvature operator C : Ω2(gE)→ Ω2(gE) as follows:
for ϕ ∈ Ω2(gE) and X, Y , Z ∈ Γ(M),

(3)
(
C(ϕ)

)
X,Y

= 1
2
∑

ϕej ,CX,Y (ej) .

Here,
(4) (Ric∧I)X,Y = Ric(X) ∧ Y +X ∧ Ric(Y ) ,
and X ∧ Y is identified as a skew-symmetric linear transformation by
(5) (X ∧ Y ) (Z) = 〈X,Z〉Y − 〈Y, Z〉X .

In the following, that C ≥ λ means that 〈C(ϕ), ϕ〉 ≥ λ|ϕ|2 for each ϕ ∈ Ω2(gE).
In [13], an inequality of Simons type for Yang-Mills fields is obtained:

Theorem 2. Let Mm (m ≥ 3) be a compact Riemannian manifold with C ≥ λ.
Then, for each Yang-Mills field R∇, we have

(6)
∫
M

|∇R∇|2 ≤
∫
M

( 4(m− 2)√
m(m− 1)

|R∇| − λ
)
|R∇|2 .

If m ≥ 5, the equality holds if and only if R∇ = 0.

This inequality implies a gap property (see [13]):
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Corollary 3. Let Mm and λ be as in Theorem 2, R∇ ∈ Ω2(gE) be a Yang-Mills
field over M . If m ≥ 3 and ‖R∇‖2

L∞ < λ2m(m−1)
16(m−2)2 , then we have R∇ = 0. If m ≥ 5

and ‖R∇‖2
L∞ ≤

λ2m(m−1)
16(m−2)2 , then we also have R∇ = 0.

When M = Sm, we have λ = 2(m−2). Therefore Corollary 3 implies Theorem 1.
A p-Yang-Mills functional is defined by Sp(∇) = 1

p

∫
M
|R∇|p, the critical points

of which are called p-Yang-Mills connections, and the associated curvature tensors
are called p-Yang-Mills fields. The article [4] investegated the gaps of p-Yang-Mills
fields of Euclidean and sphere submanifolds, and generalized the related results
of [2].

Theorem 4 (See [4, 13]). Let Mm be a submanifold of Rm+k or Sm+k. If C ≥
2(m−2), and if R∇ is a p-Yang-Mills field (p ≥ 2) with ‖R∇‖2

L∞ ≤ 1
2
(
m
2
)

(m ≥ 5),
then we have R∇ ≡ 0.

Theorem 4 is also a generalization of Theorem 1.
An exponential Yang-Mills functional is defined by Se(∇) =

∫
M

exp
( |R∇|2

2
)
, an

exponential Yang-Mills connection is a critical point of Se, and an exponential
Yang-Mills field is the curvature R∇ of an exponential Yang-Mills connection
∇ ∈ CE . The Euler-Lagrange equation of Se(·) is

(7) δ∇
[

exp
( |R∇|2

2

)
R∇
]

= 0 .

Some L2-energy gaps are obtained for four dimensional Yang-Mills fields, see for
example [5, 6, 7, 11, 12] etc. The existence of Lm/2-energy gaps for Yang-Mills fields
over m-dimensional compact or non-compact but complete Riemannian manifolds
are verified independently under some non-positive curvature conditions in [15] and
[9]. P.M.N. Feehan prove an existence of Lm/2-energy gaps over compact manifolds
without any curvature assumptions in [8]. Recently, we estimate the Lp-energy gaps
for p ≥ m/2 over the unit sphere Sm and the m/2-energy gaps over the hyperbolic
space Hm in [14].

In this paper, we establish some inequalities of Simons type for exponential
Yang-Mills fields over compact Riemannian manifolds. Then, we use these inequali-
ties to obtain some energy gaps.

2. Inequalities of Simons type for exponential Yang-Mills fields

Take a local orthornormal frame field {ei}i=1,...,m on M . We adopt the convention
of summation, and let indices i, j, k, l, u run in {1, . . . ,m}.

For each ϕ ∈ Ω2(gE), let

(8) R∇(ϕ)X,Y =
∑{

[R∇ej ,X , ϕej ,Y ]− [R∇ej ,Y , ϕej ,X ]
}
.

Then, we have (see [2])

(9) ∆∇ϕ = ∇∗∇ϕ+ C(ϕ) + <∇(ϕ) ,
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where, ∇∗∇ = −
∑
∇ei∇ei +∇Deiei is the rough Laplacian (D is the Levi-Civita

connection of M). Hence we have

(10) 1
2∆|ϕ|2 =

〈
∆∇ϕ,ϕ

〉
− |∇ϕ|2 − 〈C(ϕ), ϕ〉 −

〈
<∇(ϕ), ϕ

〉
.

By a straightforward calculation, we get

∆ exp
( |ϕ|2

2

)
= − exp

( |ϕ|2
2

)
|ϕ|2|∇|ϕ||2

+ exp
( |ϕ|2

2

) 〈
∆∇ϕ,ϕ

〉
− exp

( |ϕ|2
2

)
|∇ϕ|2

− exp
( |ϕ|2

2

)
〈C(ϕ), ϕ〉 − exp

( |ϕ|2
2

) 〈
R∇(ϕ), ϕ

〉
.(11)

Integrating both sides of (11), we have

Lemma 5. For each ϕ ∈ Ω2(gE), we have∫
M

exp
( |ϕ|2

2

)
|∇ϕ|2 +

∫
M

exp
( |ϕ|2

2

)
|ϕ|2 |∇|ϕ||2

=
∫
M

exp
( |ϕ|2

2

) 〈
∆∇ϕ,ϕ

〉
−
∫
M

exp
( |ϕ|2

2

)
〈C(ϕ), ϕ〉 −

∫
M

exp
( |ϕ|2

2

) 〈
<∇(ϕ), ϕ

〉
.(12)

In [13], we establish the following inequality:

Lemma 6. For ϕ ∈ Ω2(gE), let

(13) ρ(ϕ) =
∑〈

[ϕei,ej , ϕej ,ek ], ϕek,ei
〉
.

Then, we have

(14) |ρ(ϕ)| ≤ 4(m− 2)√
m(m− 1)

|ϕ|3 .

If m ≥ 5, the inequality is strict unless ϕ = 0.

Applying Lemma 6 to Lemma 5, we can obtain the following inequality of Simons
type for exponential Yang-Mills fields:

Theorem 7. Let Mm (m ≥ 3) be a Riemannian m-manifold, and R∇ be an
exponential Yang-Mills field over Mm. If C ≥ λ, then we have∫
M

exp
( |R∇|2

2

)
|R∇|2

∣∣∇|R∇|∣∣2 +
∫
M

exp
( |R∇|2

2

)
|∇R∇|2

≤
∫
M

( 4(m− 2)√
m(m− 1)

|R∇| − λ
)

exp
( |R∇|2

2

)
|R∇|2 .(15)
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Proof. By Bianchi identity, we have∫
M

exp
( |R∇|2

2

)〈
∆∇R∇, R∇

〉
=
∫
M

〈
δ∇R∇, δ∇

(
exp

( |R∇|2
2

)
R∇
)〉

.

Because R∇ is an exponential Yang-Mills fields, we have∫
M

exp
( |R∇|2

2

) 〈
∆∇R∇, R∇

〉
= 0 .

Hence by (12) we have∫
M

exp
( |R∇|2

2

)
|R∇|2

∣∣∇|R∇|∣∣2 +
∫
M

exp
( |R∇|2

2

)
|∇R∇|2

= −
∫
M

exp
( |R∇|2

2

) 〈
C(R∇), R∇

〉
−
∫
M

exp
( |R∇|2

2

) 〈
<∇(R∇), R∇

〉
= −

∫
M

exp
( |R∇|2

2

) 〈
C(R∇), R∇

〉
−
∫
M

exp
( |R∇|2

2

)
ρ(R∇) .(16)

If C ≥ λ, then we get

(17) −
∫
M

exp
( |R∇|2

2

) 〈
C(R∇), R∇

〉
≤ −λ

∫
M

exp
( |R∇|2

2

)
|R∇|2 .

For m ≥ 3, from Lemma 6 we have

− 4(m− 2)√
m(m− 1)

|R∇|3 ≤ ±ρ(R∇) ≤ 4(m− 2)√
m(m− 1)

|R∇|3 .

So we have

(18) −
∫
M

exp
( |R∇|2

2

)
ρ(R∇) ≤ 4(m− 2)√

m(m− 1)

∫
M

exp
( |R∇|2

2

)
|R∇|3 .

Hence from (17) and (18) we have (15). �

Corollary 8. Let Mm (m ≥ 3) be a Riemannian n-manifold, and R∇ be an
exponential Yang-Mills field over Mm. If C ≥ λ, then we have

∫
M

exp
( |R∇|2

2

) ∣∣∇R∇∣∣2 + 4
∫
M

∣∣∣∣∇ exp
(∣∣R∇∣∣2

4

)∣∣∣∣2
≤
∫
M

( 4(m− 2)√
m(m− 1)

|R∇| − λ
)

exp
(∣∣R∇∣∣2

2

) ∣∣R∇∣∣2 .(19)

Proof. Because

∫
M

exp
( |R∇|2

2

)
|R∇|2

∣∣∇|R∇|∣∣2
=
∫
M

exp
( |R∇|2

2

)∣∣∣∇|R∇|22

∣∣∣2 = 4
∫
M

∣∣∣∣∇ exp
( |R∇|2

4

)∣∣∣∣2 ,
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then, from (15) we have

4
∫
M

∣∣∣∣∇ exp
( |R∇|2

4

)∣∣∣∣2 +
∫
M

exp
( |R∇|2

2

)
|∇R∇|2

≤
∫
M

( 4(m− 2)√
m(m− 1)

|R∇| − λ
)

exp
( |R∇|2

2

)
|R∇|2 .(20)

By |∇R∇|2 ≥
∣∣∇|R∇|∣∣2 and (20) we get (19). �

By Theorem 7, we have

Corollary 9. Let Mm (m ≥ 3) be a Riemannian m-manifold, and R∇ be an
exponential Yang-Mills field over Mm. Suppose that C ≥ λ. Then, if ‖R∇‖2

L∞ ≤
m(m−1)λ2

16(m−2)2 , we have ∇R∇ = 0. Especially, on Sm, if ‖R∇‖2
L∞ < 1

2
(
m
2
)
, we have

R∇ = 0.

3. Energy gaps for exponential Yang-Mills fields

Let Mm be an m-dimensional compact Riemannian manifold. We say that the
q-Sobolev inequality holds on Mm with k1, k2 if for all u ∈ C∞(Mm) we have
(21) ‖∇u‖2

2 ≥ k1‖u‖2
q − k2‖u‖2

2 .

On the unit sphere Sm, the following Sobolev inequality holds (see [1, 10]): for
2 ≤ q ≤ 2m/(m− 2),

(22) ‖u‖2
q ≤

q − 2
mω

1−2/q
m

‖∇u‖2
2 + 1

ω
1−2/q
m

‖u‖2
2 ,

where ωm is the volume of the unit sphere Sm. Hence we have

Lemma 10. On Sm, for 2 < q ≤ 2m/(m− 2), the q-Sobolev inequality holds with
k1 = mω1−2/q

m

q−2 , k2 = m
q−2 .

Denote
da,m,r = min

{
k1,

k1a

k2

}
,

where 1
r + 1

q = 1.
In [14], we prove the following

Lemma 11. Let T be a tensor over a compact Riemannian manifold Mm where
the 2q-Sobolev inequality holds with k1, k2 for 2 < 2q ≤ 2m

m−2 . Assume that there
exist a positive constant a and a function f on M , such that
(23) ‖∇|T |‖2

2 ≤ −a‖T‖2
2 + ‖f |T |2‖1 .

If ‖f‖r < da,m,r, then we have T = 0, where r = q
q−1 ≥

m
2 .

Theorem 12. Let Mm(m ≥ 3) be a compact Riemannian manifold with C ≥ λ > 0,
where 2q-Sobolev inequality holds with k1 and k2 for 2 < 2q ≤ 2m

m−2 . Suppose that R∇

is an exponential Yang-Mills field over M . If
∥∥R∇ exp

( |R∇|2
2
)∥∥
r
<

√
m(m−1)

4(m−2) dλ,m,r,
then we have R∇ = 0, where r = q

q−1 ≥
m
2 .
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Proof. By (19) we have∫
M

∣∣∇|R∇|∣∣2 ≤ ∫
M

(
4(m− 2)√
m(m− 1)

|R∇| − λ
)

exp
( |R∇|2

2

)
|R∇|2 .

Let u = |R∇|, then∫
M

|∇u|2 ≤
∫
M

(
4(m− 2)√
m(m− 1)

u− λ
)

exp
(u2

2

)
u2 .

So, we have∫
M

|∇u|2 ≤
∫
M

(
4(m− 2)√
m(m− 1)

u exp
(u2

2

)
u2 − λ exp

(u2

2

)
u2
)

≤
∫
M

(
4(m− 2)√
m(m− 1)

u exp
(u2

2

)
u2 − λu2

)
=
∫
M

(
4(m− 2)√
m(m− 1)

u exp
(u2

2

)
− λ
)
u2

i.e.
∫
M
|∇u|2 ≤

∫
M
fu2 − λ

∫
M
u2, where f = 4(m−2)√

m(m−1)
u exp

(
u2

2
)
. Then by

Lemma 11 we can get the theorem. �

Corollary 13. Suppose that R∇ is an exponential Yang-Mills field over Sm (m ≥
3). If ∥∥∥∥R∇ exp

( |R∇|2
2

)∥∥∥∥
r

<

√
m(m− 1)

4(m− 2) ω
1
r
m min

{m(r − 1)
2 , 2(m− 2)

}
then, we have R∇ = 0, where r ≥ m

2 .

Proof. On Sm, λ = 2(m−2), and the 2q-Sobolev inequality holds for 2 < 2q ≤ 2m
m−2

with k1 = nω1−2/2q
m

2q−2 = m(r−1)
2 ω

1/r
m , k2 = m

2q−2 = m(r−1)
2 . By a straightforward

calculation, we get

(24) d2(m−2),m,r = ω1/r
m min

{m(r − 1)
2 , 2(m− 2)

}
and

d2(m−2),m,∞ = 2(m− 2) .
Then by Theorem 12, if∥∥∥∥R∇ exp

( |R∇|2
2

)∥∥∥∥
r

<

√
m(m− 1)

4(m− 2) d2(m−2),m,r ,

then we have R∇ = 0.
Especially, if∥∥∥∥R∇ exp

( |R∇|2
2

)∥∥∥∥
∞
<

√
m(m− 1)

4(m− 2) d2(m−2),m,∞ =
√
m(m− 1)

2 ,

we have R∇ = 0. �
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