Previous |  Up |  Next

Article

Keywords:
existence; anti-periodic boundary condition; Schaefer fixed-point theorem; continuity method; diffusion equation
Summary:
We establish the existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions. The energies associated to these evolution equations are quadratic forms. Our approach is based on application of the Schaefer fixed-point theorem combined with the continuity method.
References:
[1] Aizicovici, S., McKibben, M., Reich, S.: Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 43 (2001), 233-251. DOI 10.1016/S0362-546X(99)00192-3 | MR 1790104 | Zbl 0977.34061
[2] Boussandel, S.: Global existence and maximal regularity of solutions of gradient systems. J. Differ. Equations 250 (2011), 929-948. DOI 10.1016/j.jde.2010.09.009 | MR 2737819 | Zbl 1209.47020
[3] Chen, Y.: Anti-periodic solutions for semilinear evolution equations. J. Math. Anal. Appl. 315 (2006), 337-348. DOI 10.1016/j.jmaa.2005.08.001 | MR 2196551 | Zbl 1100.34046
[4] Chen, Y., Cho, Y. J., Jung, J. S.: Antiperiodic solutions for semilinear evolution equations. Math. Comput. Modelling 40 (2004), 1123-1130. DOI 10.1016/j.mcm.2003.06.007 | MR 2113840 | Zbl 1074.34058
[5] Chen, Y., Nieto, J. J., O'Regan, D.: Anti-periodic solutions for fully nonlinear first-order differential equations. Math. Comput. Modelling 46 (2007), 1183-1190. DOI 10.1016/j.mcm.2006.12.006 | MR 2376702 | Zbl 1142.34313
[6] Chen, Y., Nieto, J. J., O'Regan, D.: Anti-periodic solutions for evolution equations associated with maximal monotone mappings. Appl. Math. Lett. 24 (2011), 302-307. DOI 10.1016/j.aml.2010.10.010 | MR 2741034 | Zbl 1215.34069
[7] Chen, Y., O'Regan, D., Agarwal, R. P.: Anti-periodic solutions for evolution equations associated with monotone type mappings. Appl. Math. Lett. 23 (2010), 1320-1325. DOI 10.1016/j.aml.2010.06.022 | MR 2718504 | Zbl 1208.34098
[8] Chen, Y., O'Regan, D., Agarwal, R. P.: Anti-periodic solutions for semilinear evolution equations in Banach spaces. J. Appl. Math. Comput. 38 (2012), 63-70. DOI 10.1007/s12190-010-0463-y | MR 2886666 | Zbl 1302.34097
[9] Chen, Y., Wang, X., Xu, H.: Anti-periodic solutions for semilinear evolution equations. J. Math. Anal. Appl. 273 (2002), 627-636. DOI 10.1016/S0022-247X(02)00288-3 | MR 1932511 | Zbl 1055.34113
[10] Chill, R., Fašangová, E.: Gradient Systems. Lecture Notes of the 13th International Internet Seminar. Matfyzpress, Praha (2010).
[11] Haraux, A.: Anti-periodic solutions of some nonlinear evolution equations. Manuscr. Math. 63 (1989), 479-505. DOI 10.1007/BF01171760 | MR 0991267 | Zbl 0684.35010
[12] Okochi, H.: On the existence of periodic solutions to nonlinear abstract parabolic equations. J. Math. Soc. Japan 40 (1988), 541-553. DOI 10.2969/jmsj/04030541 | MR 0945351 | Zbl 0679.35046
[13] Okochi, H.: On the existence of anti-periodic solutions to a nonlinear evolution equation associated with odd subdifferential operators. J. Funct. Anal. 91 (1990), 246-258. DOI 10.1016/0022-1236(90)90143-9 | MR 1058971 | Zbl 0735.35071
[14] Okochi, H.: On the existence of anti-periodic solutions to nonlinear parabolic equations in noncylindrical domains. Nonlinear Anal., Theory Methods Appl. 14 (1990), 771-783. DOI 10.1016/0362-546X(90)90105-P | MR 1049120 | Zbl 0715.35091
[15] Souplet, Ph.: An optimal uniqueness condition for the antiperiodic solutions of parabolic evolution equations. C. R. Acad. Sci., Paris, Sér. I 319 (1994), 1037-1041 French. MR 1305673 | Zbl 0809.35036
[16] Souplet, Ph.: Optimal uniqueness condition for the antiperiodic solutions of some nonlinear parabolic equations. Nonlinear Anal., Theory Methods Appl. 32 (1998), 279-286. DOI 10.1016/S0362-546X(97)00477-X | MR 1491628 | Zbl 0892.35078
[17] Zhenhai, L.: Anti-periodic solutions to nonlinear evolution equations. J. Funct. Anal. 258 (2010), 2026-2033. DOI 10.1016/j.jfa.2009.11.018 | MR 2578462 | Zbl 1184.35184
Partner of
EuDML logo