Previous |  Up |  Next

Article

Keywords:
entry decision time; exit decision time; implementation delay; optimal stopping problem; viscosity solution
Summary:
We employ a natural method from the perspective of the optimal stopping theory to analyze entry-exit decisions with implementation delay of a project, and provide closed expressions for optimal entry decision times, optimal exit decision times, and the maximal expected present value of the project. The results in conventional research were obtained under the restriction that the sum of the entry cost and exit cost is nonnegative. In practice, we may meet cases when this sum is negative, so it is necessary to remove the restriction. If the sum is negative, there may exist two trigger prices of entry decision, which does not happen when the sum is nonnegative, and it is not optimal to enter and then immediately exit the project even though it is an arbitrage opportunity.
References:
[1] Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics 116, Cambridge University Press, Cambridge (2009). DOI 10.1017/CBO9780511809781 | MR 2512800 | Zbl 1200.60001
[2] Bar-Ilan, A., Strange, W. C.: Investment lags. Amer. Econ. Rev. 86 (1996), 610-622.
[3] Boyarchenko, S., Levendorskiĭ, S.: Irreversible Decisions Under Uncertainty. Optimal Stopping Made Easy. Studies in Economic Theory 27, Springer, Berlin (2007). DOI 10.1007/978-3-540-73746-9 | MR 2370439 | Zbl 1131.91001
[4] Costeniuc, M., Schnetzer, M., Taschini, L.: Entry and exit decision problem with implementation delay. J. Appl. Probab. 45 (2008), 1039-1059. DOI 10.1239/jap/1231340232 | MR 2484160 | Zbl 1167.60008
[5] Dixit, A.: Entry and exit decisions under uncertainty. J. Political Econ. 97 (1989), 620-638. DOI 10.1086/261619
[6] Duckworth, J. K., Zervos, M.: An investment model with entry and exit decisions. J. Appl. Probab. 37 (2000), 547-559. DOI 10.1239/jap/1014842558 | MR 1781012 | Zbl 0959.93058
[7] Gauthier, L., Morellec, E.: Investment under uncertainty with implementation delay. New Developments and Applications in Real Options. Available at https://infoscience.epfl.ch/record/188140/files/morellec$_-$delay.PDF (2000).
[8] Isik, M., Coble, K. H., Hudson, D., House, L. O.: A model of entry-exit decisions and capacity choice under demand uncertainty. Agricultural Economics 28 (2003), 215-224. DOI 10.1016/S0169-5150(03)00016-1
[9] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics 113, Springer, New York (1991). DOI 10.1007/978-1-4612-0949-2 | MR 1121940 | Zbl 0734.60060
[10] Kjærland, F.: A real option analysis of investments in hydropower---The case of Norway. Energy Policy 35 (2007), 5901-5908. DOI 10.1016/j.enpol.2007.07.021
[11] Leung, M. K., Young, T., Fung, M. K.: The entry and exit decisions of foreign banks in Hong Kong. Manag. Decis. Econ. 29 (2008), 503-512. DOI 10.1002/mde.1414
[12] Levendorskii, S.: Perpetual American options and real options under mean-reverting processes. SSRN (2005), 27 pages. DOI 10.2139/ssrn.714321
[13] Lumley, R. R., Zervos, M.: A model for investments in the natural resource industry with switching costs. Math. Oper. Res. 26 (2001), 637-653. DOI 10.1287/moor.26.4.637.10008 | MR 1870738 | Zbl 1082.90537
[14] Øksendal, B.: Optimal stopping with delayed information. Stoch. Dyn. 5 (2005), 271-280. DOI 10.1142/S0219493705001419 | MR 2147288 | Zbl 1089.60027
[15] Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Universitext, Springer, Berlin (2007). DOI 10.1007/978-3-540-69826-5 | MR 2322248 | Zbl 1116.93004
[16] Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications. Stochastic Modelling and Applied Probability 61, Springer, Berlin (2009). DOI 10.1007/978-3-540-89500-8 | MR 2533355 | Zbl 1165.93039
[17] Pradhan, N. C., Leung, P.: Modeling entry, stay, and exit decisions of the longline fishers in Hawaii. Marine Policy 28 (2004), 311-324. DOI 10.1016/j.marpol.2003.09.005
[18] Shirakawa, H.: Evaluation of investment opportunity under entry and exit decisions. RIMS Kokyuroku 987 (1997), 107-124. MR 1601586 | Zbl 0936.91033
[19] Sø{d}al, S.: Entry and exit decisions based on a discount factor approach. J. Econ. Dyn. Control 30 (2006), 1963-1986. DOI 10.1016/j.jedc.2005.06.011 | MR 2273299 | Zbl 1162.91385
[20] Tsekrekos, A. E.: The effect of mean reversion on entry and exit decisions under uncertainty. J. Econ. Dyn. Control 34 (2010), 725-742. DOI 10.1016/j.jedc.2009.10.015 | MR 2607510 | Zbl 1202.91340
[21] Wang, H.: A sequential entry problem with forced exits. Math. Oper. Res. 30 (2005), 501-520. DOI 10.1287/moor.1040.0141 | MR 2142046 | Zbl 1082.60036
[22] Zhang, Y.: Entry and exit decisions with linear costs under uncertainty. Stochastics 87 (2015), 209-234. DOI 10.1080/17442508.2014.939976 | MR 3316809 | Zbl 1351.60052
Partner of
EuDML logo