[2] Ainsworth, M., Vejchodský, T.:
Robust error bounds for finite element approximation of reaction-diffusion problems with non-constant reaction coefficient in arbitrary space dimension. Comput. Methods Appl. Mech. Eng. 281 (2014), 184-199.
DOI 10.1016/j.cma.2014.08.005 |
MR 3262938
[3] Babuška, I., Osborn, J.:
Eigenvalue problems. Handbook of Numerical Analysis, Volume II: Finite Element Methods (Part 1) P. G. Ciarlet, J. L. Lions North-Holland, Amsterdam (1991), 641-787.
MR 1115240 |
Zbl 0875.65087
[6] Bramble, J. H., Osborn, J. E.:
Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators. Mathematical Foundations of the Finite Element Method with Applications to PDE A. K. Aziz Academic Press, New York (1972), 387-408.
DOI 10.1016/b978-0-12-068650-6.50019-8 |
MR 0431740 |
Zbl 0264.35055
[9] Grisvard, P.:
Elliptic Problems for Nonsmooth Domains. Monographs and Studies in Mathematics 24, Pitman, Boston (1985).
MR 0775683 |
Zbl 0695.35060
[11] Kobayashi, K.:
On the interpolation constants over triangular elements. Proceedings of the International Conference Applications of Mathematics 2015 J. Brandts et al. Czech Academy of Sciences, Institute of Mathematics, Praha (2015), 110-124.
MR 3700193 |
Zbl 1363.65014
[15] Liu, X., Kikuchi, F.:
Analysis and estimation of error constants for $P_0$ and $P_1$ interpolations over triangular finite elements. J. Math. Sci., Tokyo 17 (2010), 27-78.
MR 2676659 |
Zbl 1248.65118
[17] Šebestová, I., Vejchodský, T.:
Two-sided bounds for eigenvalues of differential operators with applications to Friedrichs, Poincaré, trace, and similar constants. SIAM J. Numer. Anal. 52 (2014), 308-329.
DOI 10.1137/13091467X |
MR 3163245 |
Zbl 1287.35050
[18] Takayasu, A., Liu, X., Oishi, S.:
Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains. Nonlinear Theory and Its Applications 4 (2013), 34-61.
DOI 10.1587/nolta.4.34