[1] Adams, R. A.:
Sobolev Spaces. Pure and Applied Mathematics 65, Academic Press, New York (1975).
MR 0450957 |
Zbl 0314.46030
[2] Agmon, S.:
Lectures on Elliptic Boundary Value Problems. Van Nostrand Mathematical Studies 2, Princeton, Toronto (1965).
MR 0178246 |
Zbl 0142.37401
[3] Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L. D., Russo, A.:
Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013), 376-391.
DOI 10.1016/j.camwa.2013.05.015 |
MR 3073346 |
Zbl 1347.65172
[4] Antonietti, P. F., Veiga, L. Beirão da, Scacchi, S., Verani, M.:
A $C^1$ virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016), 34-56.
DOI 10.1137/15M1008117 |
MR 3439765 |
Zbl 1336.65160
[6] Antonietti, P. F., Mascotto, L., Verani, M.:
A multigrid algorithm for the $p$-version of the virtual element method. ESAIM, Math. Model. Numer. Anal. 52 (2018), 337-364.
DOI 10.1051/m2an/2018007 |
MR 3808163
[7] Artioli, E., Miranda, S. De, Lovadina, C., Patruno, L.:
A stress/displacement Virtual Element method for plane elasticity problems. Comput. Meth. Appl. Mech. Eng. 325 (2017), 155-174.
DOI 10.1016/j.cma.2017.06.036 |
MR 3693423
[10] Bader, R. F. W.:
A quantum theory of molecular structure and its applications. Chem. Rev. 91 (1991), 893-928.
DOI 10.1021/cr00005a013
[11] Veiga, L. Beirão da, Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., Russo, A.:
Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013), 199-214.
DOI 10.1142/S0218202512500492 |
MR 2997471 |
Zbl 06144424
[12] Veiga, L. Beirão da, Brezzi, F., Dassi, F., Marini, L. D., Russo, A.:
Virtual element approximation of 2D magnetostatic problems. Comput. Methods Appl. Mech. Eng. 327 (2017), 173-195.
DOI 10.1016/j.cma.2017.08.013 |
MR 3725767
[13] Veiga, L. Beirão da, Brezzi, F., Dassi, F., Marini, L. D., Russo, A.:
Serendipity virtual elements for general elliptic equations in three dimensions. Chin. Ann. Math., Ser. B 39 (2018), 315-334.
DOI 10.1007/s11401-018-1066-4 |
MR 3757651 |
Zbl 06877227
[18] Veiga, L. Beirão da, Lipnikov, K., Manzini, G.:
Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49 (2011), 1737-1760.
DOI 10.1137/100807764 |
MR 2837482 |
Zbl 1242.65215
[20] Veiga, L. Beirão da, Lovadina, C., Vacca, G.:
Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM, Math. Model. Numer. Anal. 51 (2017), 509-535.
DOI 10.1051/m2an/2016032 |
MR 3626409 |
Zbl 06706760
[26] Benedetto, M. F., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.:
A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306 (2016), 148-166.
DOI 10.1016/j.jcp.2015.11.034 |
MR 3432346 |
Zbl 1351.76048
[29] Cáceres, E., Gatica, G. N.:
A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37 (2017), 296-331.
DOI 10.1016/j.camwa.2017.03.021 |
MR 3614887
[30] Cai, Y., Bai, Z., Pask, J. E., Sukumar, N.:
Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations. J. Comput. Phys. 255 (2013), 16-30.
DOI 10.1016/j.jcp.2013.07.020 |
MR 3109776 |
Zbl 1349.81204
[34] Cangiani, A., Manzini, G., Sutton, O.:
Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. Analysis 37 (2017), 1317-1354.
DOI 10.1093/imanum/drw036 |
MR 3671497
[35] Chi, H., Veiga, L. Beirão da, Paulino, G. H.:
Some basic formulations of the virtual element method (VEM) for finite deformations. Comput. Methods Appl. Mech. Eng. 318 (2017), 148-192.
DOI 10.1016/j.cma.2016.12.020 |
MR 3627175
[40] Gardini, F., Vacca, G.:
Virtual element method for second-order elliptic eigenvalue problems. (to appear) in IMA J. Numer. Anal.
DOI 10.1093/imanum/drx063
[41] Grisvard, P.:
Singularities in boundary value problems and exact controllability of hyperbolic systems. Optimization, Optimal Control and Partial Differential Equations V. Barbu et al. Internat. Ser. Numer. Math. 107, Birkhäuser, Basel (1992), 77-84.
DOI 10.1007/978-3-0348-8625-3_8 |
MR 1223360 |
Zbl 0778.93007
[43] Kato, T.:
Perturbation Theory for Linear Operators. Grundlehren der Mathematischen Wissenschaften 132, Springer, Berlin (1976).
MR 0407617 |
Zbl 0342.47009
[47] Mora, D., Rivera, G., Rodríguez, R.:
A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem. Comput. Math. Appl. 74 (2017), 2172-2190.
DOI 10.1016/j.camwa.2017.05.016 |
MR 3715326
[48] Mora, D., Rivera, G., Velásquez, I.:
A virtual element method for the vibration problem of Kirchhoff plates. (to appear) in ESAIM Math. Model. Numer. Anal.
DOI 10.1051/m2an/2017041
[51] Pask, J. E., Sterne, P. A.:
Finite element methods in ab initio electronic structure calculations. Modelling Simul. Mater. Sci. Eng. 13 (2005), R71--R96.
DOI 10.1088/0965-0393/13/3/R01
[52] Pask, J. E., Sukumar, N.:
Partition of unity finite element method for quantum mechanical materials calculations. Extreme Mechanics Letters 11 (2017), 8-17.
DOI 10.1016/j.eml.2016.11.003
[53] Pask, J. E., Sukumar, N., Guney, M., Hu, W.:
Partition-of-unity finite-element method for large scale quantum molecular dynamics on massively parallel computational platforms. Technical report LLNL-TR-470692, Department of Energy LDRD (2011), Available at
https://e-reports-ext.llnl.gov/pdf/471660.pdf\kern0pt
[55] Sukumar, N., Pask, J. E.:
Classical and enriched finite element formulations for Bloch-periodic boundary conditions. Int. J. Numer. Methods Eng. 77 (2009), 1121-1138.
DOI 10.1002/nme.2457 |
MR 2490728 |
Zbl 1156.81313
[59] Yang, W., Ayers, P. W.: Density-functional theory. Computational Medicinal Chemistry for Drug Discovery CRC Press, Boca Raton (2003), 103-132.