[2] Arazy J., Upmeier H.:
Weyl calculus for complex and real symmetric domains. Harmonic Analysis on Complex Homogeneous Domains and Lie Groups (Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 3–4, 165–181.
MR 1984098 |
Zbl 1150.43302
[3] Arazy J., Upmeier H.:
Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains. Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), De Gruyter, Berlin, 2002, pp. 151–211.
MR 1943284
[4] Arnal D., Cahen M., Gutt S.:
Representation of compact Lie groups and quantization by deformation. Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4–5, 123–141.
MR 1027456
[5] Arratia O., Martín M. A., del Olmo M. A.:
Deformation on phase space. RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 96 (2002), no. 1, 63–81.
MR 1915672
[6] Berezin F. A.:
Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175 (Russian).
MR 0395610 |
Zbl 0976.83531
[7] Berezin F. A.:
Quantization in complex symmetric spaces. Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 363–402, 472 (Russian).
MR 0508179
[8] Brif C., Mann A.:
Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries. Phys. Rev. A (3) 59 (1999), no. 2, 971–987.
DOI 10.1103/PhysRevA.59.971 |
MR 1679730
[9] Cahen B.:
Quantification d'une orbite massive d'un groupe de Poincaré généralisé. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 803–806 (French. English. French summary).
MR 1483721 |
Zbl 0883.22016
[13] Cahen B.:
Global parametrization of scalar holomorphic coadjoint orbits of a quasi-Hermitian Lie group. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 52 (2013), 35–48.
MR 3202747
[14] Cahen B.:
Stratonovich-Weyl correspondence for the real diamond group. Riv. Mat. Univ. Parma (N.S.) 4 (2013), no. 1, 197–213.
MR 3137538
[15] Cahen B.:
Berezin transform and Stratonovich-Weyl correspondence for the multi-dimensional Jacobi group. Rend. Semin. Mat. Univ. Padova 136 (2016), 69–93.
DOI 10.4171/RSMUP/136-7 |
MR 3593544
[17] Folland B.:
Harmonic Analysis in Phase Space. Annals of Mathematics Studies, 122, Princeton University Press, Princeton, 1989.
MR 0983366 |
Zbl 0682.43001
[18] Gracia-Bondía J. M.:
Generalized Moyal quantization on homogeneous symplectic spaces. Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math., 134, Amer. Math. Soc., Providence, 1992, pp. 93–114.
MR 1187280
[20] Hörmander L.:
The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators. Grundlehren der Mathematischen Wissenschaften, 274, Springer, Berlin, 1985.
MR 0781536
[21] Kirillov A. A.:
Lectures on the Orbit Method. Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, 2004.
DOI 10.1090/gsm/064 |
MR 2069175
[22] Kostant B.:
Quantization and unitary representations. I. Prequantization. Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 170, Springer, Berlin, 1970, pp. 87–208.
MR 0294568
[23] Landsman N. P.:
Mathematical Topics Between Classical and Quantum Mechanics. Springer Monographs in Mathematics, Springer, New York, 1998.
MR 1662141
[27] Stratonovich R. L.:
On distributions in representation space. Soviet Physics. JETP 4 (1957), 891–898.
MR 0088173 |
Zbl 0082.19302
[28] Taylor M. E.:
Noncommutative Harmonic Analysis. Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, 1986.
MR 0852988
[29] Unterberger A., Unterberger J.:
La série discrète de $SL(2, {\mathbb R})$ et les opérateurs pseudo- différentiels sur une demi-droite. Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 83–116 (French).
DOI 10.24033/asens.1467 |
MR 0744069
[32] Wallach N. R.:
Harmonic Analysis on Homogeneous Spaces. Pure and Applied Mathematics, 19, Marcel Dekker, New York, 1973.
MR 0498996 |
Zbl 0265.22022