Previous |  Up |  Next

Article

Keywords:
semidirect products; invariant symbolic calculus; coadjoint orbit; unitary representation; Berezin quantization; Weyl quantization; Poincaré group
Summary:
Let $G$ be the semidirect product $V\rtimes \,K$ where $K$ is a connected semisimple non-compact Lie group acting linearly on a finite-dimensional real vector space $V$. Let $\pi$ be a unitary irreducible representation of $G$ which is associated by the Kirillov-Kostant method of orbits with a coadjoint orbit of $G$ whose little group is a maximal compact subgroup of $K$. We construct an invariant symbolic calculus for $\pi$, under some technical hypothesis. We give some examples including the Poincaré group.
References:
[1] Ali S. T., Engliš M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17 (2005), no. 4, 391–490. DOI 10.1142/S0129055X05002376 | MR 2151954
[2] Arazy J., Upmeier H.: Weyl calculus for complex and real symmetric domains. Harmonic Analysis on Complex Homogeneous Domains and Lie Groups (Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 3–4, 165–181. MR 1984098 | Zbl 1150.43302
[3] Arazy J., Upmeier H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains. Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), De Gruyter, Berlin, 2002, pp. 151–211. MR 1943284
[4] Arnal D., Cahen M., Gutt S.: Representation of compact Lie groups and quantization by deformation. Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4–5, 123–141. MR 1027456
[5] Arratia O., Martín M. A., del Olmo M. A.: Deformation on phase space. RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 96 (2002), no. 1, 63–81. MR 1915672
[6] Berezin F. A.: Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175 (Russian). MR 0395610 | Zbl 0976.83531
[7] Berezin F. A.: Quantization in complex symmetric spaces. Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 363–402, 472 (Russian). MR 0508179
[8] Brif C., Mann A.: Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries. Phys. Rev. A (3) 59 (1999), no. 2, 971–987. DOI 10.1103/PhysRevA.59.971 | MR 1679730
[9] Cahen B.: Quantification d'une orbite massive d'un groupe de Poincaré généralisé. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 803–806 (French. English. French summary). MR 1483721 | Zbl 0883.22016
[10] Cahen B.: Weyl quantization for semidirect products. Differential Geom. Appl. 25 (2007), no. 2, 177–190. DOI 10.1016/j.difgeo.2006.08.005 | MR 2311733 | Zbl 1117.81087
[11] Cahen B.: Berezin quantization on generalized flag manifolds. Math. Scand. 105 (2009), no. 1, 66–84. DOI 10.7146/math.scand.a-15106 | MR 2549798
[12] Cahen B.: Berezin quantization and holomorphic representations. Rend. Semin. Mat. Univ. Padova 129 (2013), 277–297. DOI 10.4171/RSMUP/129-16 | MR 3090642
[13] Cahen B.: Global parametrization of scalar holomorphic coadjoint orbits of a quasi-Hermitian Lie group. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 52 (2013), 35–48. MR 3202747
[14] Cahen B.: Stratonovich-Weyl correspondence for the real diamond group. Riv. Mat. Univ. Parma (N.S.) 4 (2013), no. 1, 197–213. MR 3137538
[15] Cahen B.: Berezin transform and Stratonovich-Weyl correspondence for the multi-dimensional Jacobi group. Rend. Semin. Mat. Univ. Padova 136 (2016), 69–93. DOI 10.4171/RSMUP/136-7 | MR 3593544
[16] Cariñena J. F., Gracia-Bondía J. M., Várilly J. C.: Relativistic quantum kinematics in the Moyal representation. J. Phys. A 23 (1990), no. 6, 901–933. DOI 10.1088/0305-4470/23/6/015 | MR 1048769
[17] Folland B.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies, 122, Princeton University Press, Princeton, 1989. MR 0983366 | Zbl 0682.43001
[18] Gracia-Bondía J. M.: Generalized Moyal quantization on homogeneous symplectic spaces. Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math., 134, Amer. Math. Soc., Providence, 1992, pp. 93–114. MR 1187280
[19] Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, 2001. DOI 10.1090/gsm/034 | MR 1834454 | Zbl 0993.53002
[20] Hörmander L.: The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators. Grundlehren der Mathematischen Wissenschaften, 274, Springer, Berlin, 1985. MR 0781536
[21] Kirillov A. A.: Lectures on the Orbit Method. Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, 2004. DOI 10.1090/gsm/064 | MR 2069175
[22] Kostant B.: Quantization and unitary representations. I. Prequantization. Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 170, Springer, Berlin, 1970, pp. 87–208. MR 0294568
[23] Landsman N. P.: Mathematical Topics Between Classical and Quantum Mechanics. Springer Monographs in Mathematics, Springer, New York, 1998. MR 1662141
[24] Rawnsley J. H.: Representations of a semi-direct product by quantization. Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 2, 345–350. DOI 10.1017/S0305004100051793 | MR 0387499
[25] Rawnsley J., Cahen M., Gutt S.: Quantization on Kähler manifolds. I. Geometric interpretation of Berezin quantization. J. Geom. Phys. 7 (1990), 45–62. DOI 10.1016/0393-0440(90)90019-Y | MR 1094730
[26] Simms D. J.: Lie Groups and Quantum Mechanics. Lecture Notes in Mathematics, 52, Springer, Berlin, 1968. DOI 10.1007/BFb0069914 | MR 0232579 | Zbl 0161.24002
[27] Stratonovich R. L.: On distributions in representation space. Soviet Physics. JETP 4 (1957), 891–898. MR 0088173 | Zbl 0082.19302
[28] Taylor M. E.: Noncommutative Harmonic Analysis. Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, 1986. MR 0852988
[29] Unterberger A., Unterberger J.: La série discrète de $SL(2, {\mathbb R})$ et les opérateurs pseudo- différentiels sur une demi-droite. Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 83–116 (French). DOI 10.24033/asens.1467 | MR 0744069
[30] Várilly J. C., Gracia-Bondía J. M.: The Moyal representation for spin. Ann. Physics 190 (1989), no. 1, 107–148. DOI 10.1016/0003-4916(89)90262-5 | MR 0994048
[31] Voros A.: An algebra of pseudodifferential operators and the asymptotics of quantum mechanics. J. Funct. Anal. 29 (1978), no. 1, 104–132. DOI 10.1016/0022-1236(78)90049-6 | MR 0496088
[32] Wallach N. R.: Harmonic Analysis on Homogeneous Spaces. Pure and Applied Mathematics, 19, Marcel Dekker, New York, 1973. MR 0498996 | Zbl 0265.22022
[33] Wildberger N. J.: On the Fourier transform of a compact semi simple Lie group. J. Austral. Math. Soc. Ser. A 56 (1994), no. 1, 64–116. DOI 10.1017/S1446788700034741 | MR 1250994
Partner of
EuDML logo