Previous |  Up |  Next

Article

Keywords:
$q$-binomial coefficient; $q$-Dixon identity; recurrence
Summary:
We give a new and elementary proof of Jackson's terminating $q$-analogue of Dixon's identity by using recurrences and induction.
References:
[1] Andrews, G. E.: The Theory of Partitions. Cambridge University Press, Cambridge (1998). MR 1634067 | Zbl 0996.11002
[2] Bailey, W. N.: A note on certain $q$-identities. Q. J. Math., Oxf. Ser. 12 (1941), 173-175. DOI 10.1093/qmath/os-12.1.173 | MR 0005964 | Zbl 0063.00168
[3] Dixon, A. C.: Summation of a certain series. London M. S. Proc. 35 (1903), 284-289. DOI 10.1112/plms/s1-35.1.284 | MR 1576998 | Zbl 34.0490.02
[4] Ekhad, S. B.: A very short proof of Dixon's theorem. J. Comb. Theory, Ser. A 54 (1990), 141-142. DOI 10.1016/0097-3165(90)90014-N | MR 1051787 | Zbl 0707.05007
[5] Gessel, I., Stanton, D.: Short proofs of Saalschütz and Dixon's theorems. J. Comb. Theory Ser. A 38 (1985), 87-90. DOI 10.1016/0097-3165(85)90026-3 | MR 0773560 | Zbl 0559.05008
[6] Guo, V. J. W.: A simple proof of Dixon's identity. Discrete Math. 268 (2003), 309-310. DOI 10.1016/S0012-365X(03)00054-2 | MR 1983288 | Zbl 1022.05006
[7] Guo, V. J. W., Zeng, J.: A short proof of the q-Dixon identity. Discrete Math. 296 (2005), 259-261. DOI 10.1016/j.disc.2005.04.006 | MR 2154718 | Zbl 1066.05022
[8] Jackson, F. H.: Certain $q$-identities. Q. J. Math., Oxford Ser. 12 (1941), 167-172. DOI 0.1093/qmath/os-12.1.167 | MR 0005963 | Zbl 0063.03007
[9] Koepf, W.: Hypergeometric Summation---An Algorithmic Approach to Summation and Special Function Identities. Universitext, Springer, London (2014). DOI 10.1007/978-1-4471-6464-7 | MR 3289086 | Zbl 1296.33002
[10] Mikić, J.: A proof of a famous identity concerning the convolution of the central binomial coefficients. J. Integer Seq. 19 (2016), Article ID 16.6.6, 10 pages. MR 3546620 | Zbl 1343.05015
[11] Mikić, J.: A proof of Dixon's identity. J. Integer Seq. 19 (2016), Article ID 16.5.3, 5 pages. MR 3514546 | Zbl 06600942
[12] Petkovšek, M., Wilf, H. S., Zeilberger, D.: A = B. With foreword by Donald E. Knuth. A. K. Peters, Wellesley (1996). MR 1379802 | Zbl 0848.05002
[13] Zeilberger, D.: A $q$-Foata proof of the $q$-Saalschütz identity. Eur. J. Comb. 8 (1987), 461-463. DOI 10.1016/S0195-6698(87)80054-9 | MR 0930183 | Zbl 0643.05003
Partner of
EuDML logo