Article
Keywords:
Libera operator; Hilbert matrix operator; Hardy space; Bergman space; Bloch space; Hardy-Bloch space
Summary:
We show that if $\alpha >1$, then the logarithmically weighted Bergman space $A_{\log ^{\alpha }}^2$ is mapped by the Libera operator $\mathcal {L}$ into the space $A_{\log ^{\alpha -1}}^2$, while if $\alpha >2$ and $0<\varepsilon \leq \alpha -2$, then the Hilbert matrix operator $H$ maps $A_{\log ^\alpha }^2$ into $A_{\log ^{\alpha -2-\varepsilon }}^2$.\newline We show that the Libera operator $\mathcal {L}$ maps the logarithmically weighted Bloch space $\mathcal {B}_{\log ^{\alpha }}$, $\alpha \in \mathbb {R}$, into itself, while $H$ maps $\mathcal {B}_{\log ^{\alpha }}$ into $\mathcal {B}_{\log ^{\alpha +1}}$.\newline In Pavlović's paper (2016) it is shown that $\mathcal {L}$ maps the logarithmically weighted Hardy-Bloch space $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha >0$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$. We show that this result is sharp. We also show that $H$ maps $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha \geq {0}$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$ and that this result is sharp also.
References:
[2] Jevtić, M., Karapetrović, B.:
Libera operator on mixed norm spaces $H_{\nu}^{p,q,\alpha}$ when $0. Filomat 31 (2017), 4641-4650. DOI 10.2298/FIL1714641J | MR 3730385
[6] Pavlović, M.:
Definition and properties of the libera operator on mixed norm spaces. The Scientific World Journal 2014 (2014), Article ID 590656, 15 pages.
DOI 10.1155/2014/590656
[9] Zhu, K.:
Operator Theory in Function Spaces. Monographs and Textbooks in Pure and Applied Mathematics 139, Marcel Dekker, New York (1990).
MR 1074007 |
Zbl 0706.47019
[10] Zygmund, A.:
Trigonometric Series. Vol. I, II. Cambridge University Press, Cambridge (1959).
MR 1963498 |
Zbl 1084.42003