Previous |  Up |  Next

Article

Keywords:
CF-couple; CF-module; commutative ring; local ring
Summary:
Let $R$ be a commutative ring with unit. We give some criterions for determining when a direct sum of two CF-modules over $R$ is a CF-module. When $R$ is local, we characterize the CF-modules over $R$ whose tensor product is a CF-module.
References:
[1] Auslander M., Buchsbaum D. A.: Invariant factors and two criteria for projectivity of modules. Trans. Amer. Math. Soc. 104 (1962), 516–522. DOI 10.1090/S0002-9947-1962-0157987-5
[2] Behboodi M., Ghorbani A., Moradzadeh-Dehkordi A.: Commutative Noetherian local rings whose ideals are direct sums of cyclic modules. J. Algebra 345 (2011), 257–265. DOI 10.1016/j.jalgebra.2011.08.017
[3] Brown William C.: Matrices over Commutative Rings. Marcel Decker Inc., New York, 1993.
[4] Charkani M. E., Akharraz I.: Fitting ideals and cyclic decomposition of finitely generated modules. Arab. J. Sci. Eng. Sect. C (2000), 151–156.
[5] Cohen I. S., Kaplansky I.: Rings for which every module is a direct sum of cyclic modules. Math. Z. 54 (1951), 97–101. DOI 10.1007/BF01179851
[6] Griffith P.: On the decomposition of modules and generalized left uniserial rings. Math. Ann. 184 (1970), 300–308. DOI 10.1007/BF01350858
[7] Klingler L., Levy L. S.: Representation type of commutative Noetherian rings. I. Local wildness. Pacific J. Math. 200 (2001), no. 2, 345–386. DOI 10.2140/pjm.2001.200.345
[8] Köthe G.: Verallgemeinerte abelsche gruppen mit hyperkomplexen operatorenring. Math. Z. 39 (1935), 31–44. DOI 10.1007/BF01201343
[9] Levy L. S.: Modules over Dedekind-like rings. J. Algebra 93 (1985), 1–116. DOI 10.1016/0021-8693(85)90176-0
[10] Shores T. S., Wiegand R.: Decomposition of modules and matrices. Bull. Amer. Math. Soc. 79 (1973), 1277–1280. DOI 10.1090/S0002-9904-1973-13414-7
[11] Shores T. S., Wiegand R.: Rings whose finitely generated modules are direct sums of cyclics. J. Algebra 32 (1974), 152–172. DOI 10.1016/0021-8693(74)90178-1
[12] Steinitz E.: Rechteckige Systeme und Moduln in Algebraischen Zahlköppern I. Math. Ann. 71 (1911), 328–354 (German). DOI 10.1007/BF01456849
[13] Steinitz E.: Rechteckige Systeme und Moduln in Algebraischen Zahlköppern II. Math. Ann. 72 (1912), 297–345 (German). DOI 10.1007/BF01456721
[14] Warfield R. B. Jr.: A Krull-Schmidt theorem for infinite sums of modules. Proc. Amer. Math. Soc. 22 (1969), 460–465. DOI 10.1090/S0002-9939-1969-0242886-2
[15] Warfield R. B. Jr.: Rings whose modules have nice decompositions. Math. Z. 125 (1972), 187–192. DOI 10.1007/BF01110928
[16] Weintraub S. H.: Representation Theory of Finite Groups: Algebras and Arithmetic. Graduate Studies in Mathematics, 59, American Mathematical Society, Providence, RI, 2003. DOI 10.1090/gsm/059
Partner of
EuDML logo