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CF-modules over commutative rings

Ahmed Najim, Mohammed Elhassani Charkani

Abstract. Let R be a commutative ring with unit. We give some criterions for
determining when a direct sum of two CF-modules over R is a CF-module.
When R is local, we characterize the CF-modules over R whose tensor product
is a CF-module.
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Classification: 13C05

1. Introduction

Finitely generated modules over particular commutative rings have been exten-
sively studied (see, for example, [1], [4], [7], [9], [12], [13]). Many works have been
done on modules that have a decomposition as a direct sum of cyclic modules.
Particularly, many studies have been made on commutative rings which have the
property that every module is a direct sum of cyclic modules (see, for example,
[2], [5], [6], [8], [15]). Here we are interested in a category of modules that are both
finitely generated and having quite particular decompositions into direct sums of
cyclic modules. Our work concerns the modules and not the underlying rings.

All rings considered in this paper are supposed to be with unit. Let R be
a commutative ring. A canonical form for a module M is a decomposition M ∼=
⊕n

i=1
R/Ii, where the Ii are ideals of R such that I1 ⊆ I2 ⊆ · · · ⊆ In 6= R. If M

has a canonical form, the ideals Ii are uniquely determined (see [3, Lemma 15.13]).
In this case M is called a CF -module of type (I1, I2, . . . , In). This notion of CF-
module was introduced by Shores and Wiegand in [10], [11] under the designation
“canonical form for a module”. Note that in [10] and [11] a complete structure
theory is developed for those rings for which every module that is finitely generated
direct sum of cyclic modules is a CF-module. These rings are called CF-rings.

Our work focuses on some operations on the CF-modules, especially the sum.
We show that the direct sum of two CF-modules over R is not necessarily a CF-
module even in the case where R is local. We give some criterions for determining
when a direct sum of two CF-modules over R is a CF-module, before showing
that the tensor product of two CF-modules, a submodule of a CF-module and the
quotient of a CF-module are not necessarily CF-modules. In the case R is local,
we show that a direct factor of a CF-module over R is also a CF-module, and we
characterize the CF-modules over R whose tensor product is a CF-module.
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2. The results

Let R be a commutative ring. The minimal number of generators of a finitely
generated R-module M , which is denoted by µR(M), is the smallest cardinal of
the generating families of M . If M = (0), then we put µR(M) = 0.

We will need the following two lemmas.

Lemma 2.1 ([3, Lemma 15.12]). Let R be a commutative ring. Suppose I1,
I2, . . . , In are ideals in R such that I1 + I2 + · · · + In 6= R. Then, µR(R/I1 ⊕
R/I2 ⊕ · · · ⊕ R/In) = n.

Lemma 2.2 ([3, Lemma 15.13]). Let R be a commutative ring. Suppose I1 ⊆
I2 ⊆ · · · ⊆ In and J1 ⊆ J2 ⊆ · · · ⊆ Jm are two sequences of ideals in R. We

assume In 6= R 6= Jm. If
⊕n

i=1
R/Ii

∼=
⊕m

j=1
R/Jj as R-modules, then n = m

and Ii = Ji for all i ∈ {1, 2, . . . , n}.

There are rings R for which the direct sum of two CF-modules is a CF-module.
That is the case of CF-rings. But in the general case, this result is not true, even
in the case where the ring R is local, as shown in the following example.

Example 2.3. Let K be a commutative field of characteristic p > 2. In this
example, we show that there exists a local finitely dimensional K-algebra R that
is not serial. Then, there are two incomparable ideals I1 and I2, and M =
R/I1 ⊕ R/I2 is not a CF-module, since this decomposition into indecomposables
is unique by Krull-Schmidt theorem.

Let R = K[G1 × G2], where G1 and G2 are cyclic p-groups generated respec-
tively by σ

1
and σ

2
. By theorem of Wallace (cf. [16, Theorem 7.1.5]), the Jacobson

radical of R corresponds to its augmentation ideal. In particular, the ring R is
local and all cyclic R-modules are indecomposable. The two ideals (σ

1
− 1)R and

(σ
2
− 1)R of R are such that (σ

1
− 1)R * (σ

2
− 1)R and (σ

2
− 1)R * (σ

1
− 1)R.

Indeed, if (σ
1
− 1)R ⊆ (σ

2
− 1)R, then there exists x ∈ K[G1 × G2] such that

σ
1
− 1 = (σ

2
− 1)x. Let pn be the order of σ

2
. Since p > 2 is necessarily prime,

it is odd. Since p is the characteristic of K, we get that

(σ
2
− 1)pn

=

pn

∑

i=0

(

pn

i

)

( − 1)
i
σ

2

pn−i = σ
2

pn

+ ( − 1)
pn

= 0.

It follows that

(σ
2
− 1)pn−1(σ

1
− 1) = (σ

2
− 1)pn−1(σ

2
− 1)x = 0.

As

(σ
2
− 1)pn−1(σ

1
− 1) =

(

pn−2
∑

i=0

(

pn − 1

i

)

(−1)iσ
2

pn−1−i

)

σ
1

+

pn−2
∑

i=0

(

pn − 1

i

)

(−1)i+1σ
2

pn−1−i + (−1)pn−1σ
1

+ (−1)pn

,



CF-modules over commutative rings 27

then −1 = (−1)pn

= 0 in K, which is impossible. Similarly, we show that
(σ

2
− 1)R * (σ1 − 1)R. So, R = K[G1 × G2] is a local finitely dimensional K-

algebra that is not serial. Now, if we take I1 = (σ
1
− 1)R and I2 = (σ

2
− 1)R,

then M is not a CF-module.

For two ideals I and J of a commutative ring R, (I : J) will denote the quotient
of I and J , i.e., (I : J) = {x ∈ R : xJ ⊆ I}.

To show our first interesting theorem, we give the following lemma.

Lemma 2.4. Let R be a commutative ring. Let M and N be R-modules.

Suppose that M and N are CF -modules of respective types (I1, I2, . . . , Im) and

(J1, J2, . . . , Jn) such that

(Ii : xR) + (Jn : xR) 6= R for all x ∈ R\(Ii ∪ Jn), i ∈ {1, 2, . . . , m}.

If M ⊕N is a CF-module, then the set {Ii : 1 ≤ i ≤ m} ∪ {Jn} is totally ordered

by inclusion.

Proof: Assume that M ⊕ N is a CF-module of type (L1, L2, . . . , Lr). Then, we
have

µR(M ⊕ N) = µR

(( m
⊕

i=1

R/Ii

)

⊕

( n
⊕

j=1

R/Jj

))

= µR

( r
⊕

k=1

R/Lk

)

.

As I1 + I2 + · · ·+ Im +J1 +J2 + · · ·+Jn = Im +Jn = (Im : R)+(Jn : R)  R and
L1 + L2 + · · · + Lr = Lr 6= R, then by Lemma 2.1, µR(M ⊕ N) = r = m + n =
µR(M) + µR(N). Let Im+1 = R and let k0 be the smallest integer such that
Jn ⊆ Ik0

. If k0 = 1, then we are done (since Jn ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Im). If k0 > 1,
then we will show that Ik0−1 ⊆ Jn. Let x ∈ R. As x(R/I) ∼= R/(I : xR) for all
ideal I in R (see [3, page 191]), then

x(M ⊕ N) ∼=

( m
⊕

i=1

R/(Ii : xR)

)

⊕

( n
⊕

j=1

R/(Jj : xR)

)

∼=

m+n
⊕

k=1

R/(Lk : xR).

So,

(

µR

(m+n
⊕

k=1

R/(Lk : xR)

)

< n + k0 − 1

)

⇔

(

µR

(( m
⊕

i=1

R/(Ii : xR)

)

⊕

( n
⊕

j=1

R/(Jj : xR)

))

< n + k0 − 1

)

.
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We have (L1 : xR) ⊆ (L2 : xR) ⊆ · · · ⊆ (Lm+n : xR). So, if x ∈ L0, then

µR

(
⊕m+n

k=1
R/(Lk : xR)

)

is equal to 0, and if x /∈ L0, then by Lemma 2.1,

µR

(
⊕m+n

k=1
R/(Lk : xR)

)

is equal to the largest k such that x /∈ Lk. Therefore,

x ∈ Ln+k0−1 if and only if µR(x(M⊕N)) = µR

(m+n
⊕

k=1

R/(Lk : xR)

)

< n+k0−1.

We also have

µR(x(M ⊕ N)) ≤ µR

( m
⊕

i=1

R/(Ii : xR)

)

+ µR

( n
⊕

j=1

R/(Jj : xR)

)

.

Suppose that x ∈ Ik0−1∪Jn. As Jn ⊆ Ik0
, (I1 : xR) ⊆ (I2 : xR) ⊆ · · · ⊆ (Im : xR)

and (J1 : xR) ⊆ (J2 : xR) ⊆ · · · ⊆ (Jn : xR), then

µR(x(M ⊕ N)) < n + k0 − 1.

Now, suppose that x /∈ Ik0−1 ∪ Jn. Let m0 be the largest i such that x /∈ Ii.
We have k0 − 1 ≤ m0. As (Im0

: xR) + (Jn : xR) 6= R (by hypothesis), then by
Lemma 2.2, µR(x(M ⊕ N)) = m0 + n. So,

n + k0 − 1 ≤ µR(x(M ⊕ N)).

Therefore, x ∈ Ik0−1 ∪ Jn if and only if

µR(x(M ⊕ N)) = µR

(( m
⊕

i=1

R/(Ii : xR)

)

⊕

( n
⊕

j=1

R/(Jj : xR)

))

< n + k0 − 1.

So,

x ∈ Ln+k0−1 ⇔ x ∈ Ik0−1 ∪ Jn,

i.e.,

Ln+k0−1 = Ik0−1 ∪ Jn.

Hence, Ik0−1 ⊆ Jn or Jn ⊆ Ik0−1. As k0 is minimal, then Ik0−1 ⊆ Jn. This ends
this proof (since I1 ⊆ I2 ⊆ · · · ⊆ Im ⊆ Jn or I1 ⊆ I2 ⊆ · · · ⊆ Ik0−1 ⊆ Jn ⊆
Ik0

⊆ · · · ⊆ Im). �

Now we can prove the following theorem.

Theorem 2.5. Let R be a commutative ring. Let M and N be R-modules. If

M and N are CF -modules of respective types (I1, I2, . . . , Im) and (J1, J2, . . . , Jn)
such that

(Ii : xR) + (Jj : xR) 6= R

for all x ∈ R\(Ii ∪ Jj), (i, j) ∈ {1, 2, . . . , m} × {1, 2, . . . , n}, then the following

conditions are equivalent:
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(1) M ⊕ N is a CF-module;

(2) the set {Ii : 1 ≤ i ≤ m} ∪ {Jj : 1 ≤ j ≤ n} is totally ordered by inclusion.

Proof: (1) ⇒ (2) We use induction on n. By Lemma 2.4, the statement holds
for n = 1. We assume that the statement holds for n = k ≥ 1. Let M and
N be R-modules which are CF-modules of respective types (I1, I2, . . . , Im) and
(J1, J2, . . . , Jk+1) such that

(Ii : xR) + (Jj : xR) 6= R

for all x ∈ R\(Ii ∪ Jj), (i, j) ∈ {1, 2, . . . , m} × {1, 2, . . . , k + 1} and M ⊕ N is
a CF-module. By Lemma 2.4, {Ii : 1 ≤ i ≤ m} ∪ {Jk+1} is totally ordered by

inclusion. We put I ′i = Ii for all i ∈ {1, 2, . . . , m}, I ′m+1 = Jk+1, M ′ =
⊕m+1

i=1
R/I ′i

and N ′ =
⊕k

j=1
R/Jj . Then, M ′ and N ′ are CF-modules of respective types

(I ′1, I
′
2, . . . , I

′
m+1) and (J1, J2, . . . , Jk) such that M ′⊕N ′ ∼= M⊕N is a CF-module

and

(I ′i : xR) + (Jj : xR) 6= R

for all x ∈ R\(I ′i ∪ Jj), (i, j) ∈ {1, 2, . . . , m + 1} × {1, 2, . . . , k}. By virtue of
the induction hypothesis the set {I ′i : 1 ≤ i ≤ m + 1} ∪ {Jj : 1 ≤ j ≤ k} is totally
ordered by inclusion, i.e., {Ii : 1 ≤ i ≤ m}∪{Jj : 1 ≤ j ≤ k +1} is totally ordered
by inclusion. So, the statement holds for n = k + 1.

(2) ⇒ (1) Obvious. �

In the following, Z denotes the ring of rational integers.
Let I = 4Z and J = 6Z. We take x = 2. We have (I : xZ) = 2Z and

(J : xZ) = 3Z. So, we have I + J 6= Z, but (I : xZ) + (J : xZ) = Z.

Corollary 2.6. Let R be a commutative local ring. Let M and N be R-

modules. If M and N are CF -modules of respective types (I1, I2, . . . , Im) and

(J1, J2, . . . , Jn), then the following conditions are equivalent:

(1) M ⊕ N is a CF-module;

(2) the set {Ii : 1 ≤ i ≤ m} ∪ {Jj : 1 ≤ j ≤ n} is totally ordered by inclusion.

Proof: It suffice to see that for R local the condition

(Ii : xR) + (Jj : xR) 6= R

for all x ∈ R\(Ii∪Jj), (i, j) ∈ {1, 2, . . . , m}×{1, 2, . . . , n}, is always satisfied. �

The result shown in Corollary 2.6 is not true if the ring R is not local, as shown
in the following example.

Example 2.7. We have

Z/2Z⊕ Z/10Z⊕ Z/3Z⊕ Z/21Z ∼= Z/6Z⊕ Z/210Z.
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Let M = Z/2Z ⊕ Z/10Z and N = Z/3Z ⊕ Z/21Z. Then, M and N are two
CF-modules and M ⊕ N is a CF-module, but the set {2Z, 10Z, 3Z, 21Z} is not
totally ordered by inclusion.

Corollary 2.8. Let R be a CF-ring. Let I1 and I2 be two ideals of R. Then,

((I1 : xR) + (I2 : xR) 6= R for all x ∈ R\(I1 ∪ I2)) ⇔ (I1 ⊆ I2 or I2 ⊆ I1).

Proof: Obvious from Theorem 2.5. �

Definition 2.9. Let R be a commutative ring. We say that a pair (I, J) of ideals
in R is a CF-couple, if R/I ⊕ R/J ∼= R/(I ∩ J) ⊕ R/(I + J).

To show our second interesting theorem, we give the following lemmas and
remarks.

Lemma 2.10. Let R be a commutative ring. Let I1 ⊆ I2 and J1 ⊆ J2 be ideals

of R. If (I2, J2) is a CF-couple, then (I2 + J1, I1 + J2) is a CF-couple.

Proof: Assume that (I2, J2) is a CF-couple. We have

R/I2 ⊕ R/J2
∼= R/(I2 ∩ J2) ⊕ R/(I2 + J2).

So,

R/I1 ⊗R (R/I2 ⊕ R/J2) ∼= R/I1 ⊗R (R/(I2 ∩ J2) ⊕ R/(I2 + J2)),

which gives

R/I2 ⊕ R/(I1 + J2) ∼= R/(I1 + (I2 ∩ J2)) ⊕ R/(I2 + J2).

As I1 +(I2∩J2) = I2∩(I1 +J2) (by the modular law) and I2 +J2 = I2 +(I1 +J2),
then

R/I2 ⊕ R/(I1 + J2) ∼= R/(I2 ∩ (I1 + J2)) ⊕ R/(I2 + (I1 + J2)),

i.e., (I2, I1 + J2) is a CF-couple.
Now, J1 ⊆ I1 + J2 and I1 ⊆ I2 are ideals of R such that (I1 + J2, I2) is a CF-

couple. From the above (I1 + J2, J1 + I2) is a CF-couple, i.e., (I2 + J1, I1 + J2) is
a CF-couple. �

In Lemma 2.10, if we take J1 = 0, then (I2, I1 + J2) is a CF-couple, and if we
suppose in addition that (I1, J2) is a CF-couple, then (I1 + I2 ∩ J1, J2) is a CF-
couple (it suffice to see that the couples (I1 ∩ J1, I1) and (I2 ∩ J1, J2) satisfy the
conditions of Lemma 2.10).

Remark 2.11. Keeping the assumptions of Lemma 2.10, we have

R/I2 ⊕ R/(I1 + J2) ∼= R/(I1 + (I2 ∩ J2)) ⊕ R/(I2 + J2),

and if in addition (I1, J2) is a CF-couple, then

R/I1 ⊕ R/I2 ⊕ R/J2
∼= R/I2 ⊕ R/(I1 ∩ J2) ⊕ R/(I1 + J2),



CF-modules over commutative rings 31

which gives

R/I1 ⊕ R/I2 ⊕ R/J2
∼= R/(I1 ∩ J2) ⊕ R/(I1 + (I2 ∩ J2)) ⊕ R/(I2 + J2).

So, R/I1 ⊕ R/I2 ⊕ R/J2 is a CF-module of type (I1 ∩ J2, I1 + I2 ∩ J2, I2 + J2).

Lemma 2.12. Let R be a commutative ring. Let M be a CF-module of type

(I1, I2, . . . , In), where n is a nonzero natural number and let N ∼= R/J be a cyclic

module. If (Ii, J) is a CF-couple for all i ∈ {1, 2, . . . , n} with In + J 6= R, then

M⊕N is a CF-module of type (I1∩J, I1+I2∩J, I2+I3∩J, . . . , In−1+In∩J, In+J).

Proof: We prove the result by induction on n. The statement holds for n = 1, 2
(see Remark 2.11). We assume that the statement holds for n = k ≥ 1. Let I1,
I2, . . . , Ik, Ik+1 be ideals of R such that I1 ⊆ I2 ⊆ · · · ⊆ Ik+1, and (Ii, J) is
a CF-couple for all i ∈ {1, 2, . . . , k + 1} with Ik+1 + J 6= R. We have (by virtue
of the induction hypothesis)

R/I1 ⊕ R/I2 ⊕ · · · ⊕ R/Ik ⊕ R/Ik+1 ⊕ R/J

∼= R/(I1 ∩ J) ⊕ R/(I1 + I2 ∩ J) ⊕ R/(I2 + I3 ∩ J) ⊕ · · · ⊕ R/(Ik−1 + Ik ∩ J)

⊕ R/(Ik + J) ⊕ R/Ik+1.

By Lemma 2.10, (Ik+1, Ik + J) is a CF-couple. So,

R/(Ik + J) ⊕ R/Ik+1
∼= R/(Ik+1 ∩ (Ik + J)) ⊕ R/(Ik+1 + (Ik + J)).

As Ik+1 ∩ (Ik + J) = Ik + Ik+1 ∩ J (by the modular law) and Ik+1 + (Ik + J) =
Ik+1 + J , then

R/(Ik + J) ⊕ R/Ik+1
∼= R/(Ik + Ik+1 ∩ J) ⊕ R/(Ik+1 + J).

Consequently,

R/I1 ⊕ R/I2 ⊕ · · · ⊕ R/Ik ⊕ R/Ik+1

∼= R/(I1 ∩ J) ⊕ R/(I1 + I2 ∩ J) ⊕ R/(I2 + I3 ∩ J) ⊕ · · · ⊕ R/(Ik−1 + Ik ∩ J)

⊕ R/(Ik + Ik+1 ∩ J) ⊕ R/(Ik+1 + J).

So, the statement holds for n = k + 1. �

Remark 2.13. For a commutative ring R and for any ideal J of R, ({0}, J) and
(R, J) are CF-couples.

Now we can prove the following theorem.

Theorem 2.14. Let R be a commutative ring. Let M and N be two CF-modules

of respective types (I1, I2, . . . , Im) and (J1, J2, . . . , Jn), where m and n are two

nonzero natural numbers. If for all (i, j) ∈ {1, 2, . . . , m}× {1, 2, . . . , n}, (Ii, Jj) is

a CF-couple, then M ⊕ N is a CF-module.
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Proof: We prove the result by induction on n. For n = 1, by Lemma 2.12, M ⊕
R/J1 is a CF-module of type which we denote by (I1,1, I1,2, . . . , I1,m+1). Moreover,
Lemma 2.12 shows that I1,i = Ii−1 + Ii ∩ J1 (where I0 = 0 and Im+1 = R) for
all i ∈ {1, 2, . . . , m + 1}. By Lemmas 2.10 and 2.12 and Remark 2.13, (I1,i, J2)
is a CF-couple for all i ∈ {1, 2, . . . , m, m + 1}. Let n > 1. We assume that

M ⊕
(
⊕n−1

j=1
R/Jj

)

is a CF-module of type (In−1,1, In−1,2, . . . , In−1,m+n−1) and

(In−1,i, Jn) is a CF-couple for all i ∈ {1, 2, . . . , m, m + n − 1}. Then,

M ⊕

( n
⊕

j=1

R/Jj

)

=

(

M ⊕

( n−1
⊕

j=1

R/Jj

))

⊕ R/Jn

∼=

(m+n−1
⊕

i=1

R/In−1,i

)

⊕ R/Jn.

As, by Lemma 2.12,
(
⊕m+n−1

i=1
R/In−1,i

)

⊕ R/Jn is a CF-module, then M ⊕
⊕n

j=1
R/Jj is a CF-module. �

By [3, Exercice 13, page 202], U = (3, X+1) ⊆ Z[X ] is not a direct sum of cyclic
Z[X ]-modules. So, a submodule of a CF-module is not necessarily a CF-module.

Let R be a commutative ring in which there exist two ideals I and J such that
(I, J) is not a CF-couple and I ∩ J 6= {0}. We have

(R/(I ∩ J) ⊕ R/(I ∩ J))/(I/(I ∩ J) ⊕ J/(I ∩ J)) ∼= R/I ⊕ R/J.

As R/(I ∩ J)⊕R/(I ∩ J) is a CF-module, then the quotient of CF-module is not
necessarily a CF-module.

The tensor product of two CF-modules is not necessarily a CF-module as shown
in the following example.

Example 2.15. Let F be a field, and let R = F [x, y] be the polynomial ring in
two variables. We consider the following two R-modules

M = R/(xy) ⊕ R/(x) and N = R/(xy) ⊕ R/(y).

M and N are CF-modules, and we have

M ⊗R N ∼= R/(xy) ⊕ R/(x) ⊕ R/(y)⊕ R/((x) + (y)).

Let M ′ = R/(xy)⊕R/(x) and N ′ = R/(y)⊕R/((x)+(y)). Then, M ′ and N ′ are
two CF-modules, and we have M ⊗R N = M ′ ⊕ N ′. We also have (y) 6= R, and
(xy) ⊂ (y). Let f ∈ R\((xy) ∪ (y)), i.e., f ∈ R\(y). Therefore, ((y) : fR) 6= R.
As ((xy) : fR) ⊂ ((y) : fR) (since (xy) ⊂ (y)), then

((xy) : fR) + ((y) : fR) = ((y) : fR) 6= R.

Similarly we see that

((xy) : fR) + (((x) + (y)) : fR) = (((x) + (y)) : fR) 6= R
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for all f ∈ R\((xy) ∪ ((x) + (y))), and

((x) : fR) + (((x) + (y)) : fR) = (((x) + (y)) : fR) 6= R

for all f ∈ R\((x) ∪ ((x) + (y))). Now, let f ∈ R\((x) ∪ (y)). We have

((x) : fR) + ((y) : fR) 6= R.

Supposing otherwise, there are polynomials g, h ∈ R such that x divides fg, y
divides fh and g + h = 1. As R is a gaussian domain and f /∈ (x) ∪ (y), x
divides g and y divides h. Thus 1 = g + h ∈ (x) + (y) 6= R, which is not
the case. So, by Theorem 2.5, M ′ ⊕ N ′ is CF-module if and only if the set
{(xy)}∪{(x)}∪{(y)}∪{((x)+ (y))} is totally ordered by inclusion. Or (x) * (y)
and (y) * (x). In conclusion M ⊗R N is not a CF-module.

In Example 2.15 we have seen that the two R-modules R/(xy) ⊕ R/(x) and
R/(y)⊕R/((x)+(y)) are two CF-modules while the direct sum R/(xy)⊕R/(x)⊕
R/(y) ⊕ R/((x) + (y)) is not a CF-module. So, here we have another example of
a direct sum of two CF-modules that is not a CF-module.

The case of a commutative local ring is quite interesting as shown by Corol-
lary 2.6 and the following results.

Lemma 2.16 ([14, Proposition 3]). Let R be a commutative local ring and M
an R-module. If M =

⊕

λ∈Λ
R/Iλ, where Λ is a set of index, and each Iλ is an

ideal of R, then every summand of M is also a direct sum of cyclic R-modules,

each isomorphic to one of the R/Iλ.

Proposition 2.17. Let R be a commutative local ring. Then, a summand of

a CF-module is also a CF-module.

Proof: Obvious from Lemma 2.16. �

Corollary 2.6 can be easily deduced from Lemmas 2.2 and 2.16.

Proposition 2.18. Let R be a commutative local ring. Let M and N be R-

modules. If M and N are CF -modules of respective types (I1, I2, . . . , Im) and

(J1, J2, . . . , Jn), then the following conditions are equivalent:

(1) M ⊗R N is a CF-module;

(2) the set {Ii + Jj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is totally ordered by inclusion.

Proof: (1) ⇒ (2) Assume that M ⊗R N is a CF-module of type (L1, L2, . . . , Lr).
So, we have

M ⊗R N ∼=

r
⊕

k=1

R/Lk
∼=

⊕

1≤i≤m
1≤j≤n

R/(Ii + Jj).

For each (i, j) ∈ {1, 2, . . . , m}× {1, 2, . . . , n}, R/(Ii + Jj) is isomorphic to a sum-
mand of

⊕r

k=1
R/Lk. By Lemma 2.16, every summand of

⊕r

k=1
R/Lk is also

a direct sum of cyclic R-modules, each isomorphic to one of the R/Lk. As
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every cyclic R-module is indecomposable (since R is local), then there exists
k ∈ {1, 2, . . . , r} such that R/(Ii + Jj) ∼= R/Lk. So, Ii + Jj = Lk and therefore,
the set {Ii + Jj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is totally ordered by inclusion.

(2) ⇒ (1) Obvious. �
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