Summary: We deal with complete submanifolds with weighted Poincaré inequality. By assuming the submanifold is $\delta $-stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^p$ harmonic $1$-forms, which are extensions of the results of Dung-Seo and Cavalcante-Mirandola-Vitório.
[3] Cavalcante, M. P., Mirandola, H., Vitório, F.: $L^2$ harmonic $1$-forms on submanifolds with finite total curvature. J. Geom. Anal. 24 (2014), 205-222. DOI 10.1007/s12220-012-9334-0 | MR 3145922 | Zbl 1308.53056
[4] Chao, X., Lv, Y.: $L^2$ harmonic $1$-forms on submanifolds with weighted Poincaré inequality. J. Korean Math. Soc. 53 (2016), 583-595. DOI 10.4134/JKMS.j150190 | MR 3498284 | Zbl 1339.53059
[5] Dung, N. T., Seo, K.: Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature. Ann. Global Anal. Geom. 41 (2012), 447-460. DOI 10.1007/s10455-011-9293-x | MR 2891296 | Zbl 1242.53073
[6] Dung, N. T., Seo, K.: Vanishing theorems for $L^2$ harmonic $1$-forms on complete submanifolds in a Riemannian manifold. J. Math. Anal. Appl. 423 (2015), 1594-1609. DOI 10.1016/j.jmaa.2014.10.076 | MR 3278217 | Zbl 1303.53067
[8] Greene, R. E., Wu, H.: Integrals of subharmonic functions on manifolds of nonnegative curvature. Invent. Math. 27 (1974), 265-298. DOI 10.1007/BF01425500 | MR 0382723 | Zbl 0342.31003
[14] Li, P., Schoen, R.: $L^p$ and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math. 153 (1984), 279-301. DOI 10.1007/BF02392380 | MR 0766266 | Zbl 0556.31005
[16] Miyaoka, R.: $L^2$ harmonic $1$-forms on a complete stable minimal hypersurface. Geometry and Global Analysis T. Kotake et al. Int. Research Inst., Sendai 1993, Tôhoku Univ., Mathematical Institute (1993), 289-293. MR 1361194 | Zbl 0912.53042
[18] Sang, N. D., Thanh, N. T.: Stable minimal hypersurfaces with weighted Poincaré inequality in a Riemannian manifold. Commum. Korean. Math. Soc. 29 (2014), 123-130. DOI 10.4134/CKMS.2014.29.1.123 | MR 3162987 | Zbl 1288.53055
[25] Yau, S.-T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25 (1976), 659-670 erratum ibid. 31 1982 607. DOI 10.1512/iumj.1976.25.25051 | MR 0417452 | Zbl 0335.53041
[26] Yun, G.: Total scalar curvature and $L^2$ harmonic $1$-forms on a minimal hypersurface in Euclidean space. Geom. Dedicata. 89 (2002), 135-141. DOI 10.1023/A:1014211121535 | MR 1890955 | Zbl 1002.53042