The exceptional set for Diophantine inequality with unlike powers of prime variables.
(English).Czechoslovak Mathematical Journal,
vol. 68
(2018),
issue 1,
pp. 149-168
Keywords: Davenport-Heilbronn method; prime varaible; exceptional set; Diophantine inequality
Summary: Suppose that $\lambda _1,\lambda _2,\lambda _3,\lambda _4$ are nonzero real numbers, not all negative, $\delta > 0$, $\mathcal {V}$ is a well-spaced set, and the ratio $\lambda _1/\lambda _2$ is algebraic and irrational. Denote by $E(\mathcal {V}, N,\delta )$ the number of $v\in \mathcal {V}$ with $v\leq N$ such that the inequality $$ |\lambda _1p_1^2+\lambda _2p_2^3+\lambda _3p_3^4+\lambda _4p_4^5-v|<v^{-\delta } $$ has no solution in primes $p_1$, $p_2$, $p_3$, $p_4$. We show that $$ E(\mathcal {V}, N,\delta )\ll N^{1+2\delta -{1}/{72}+\varepsilon } $$ for any $\varepsilon >0$.
[3] Davenport, H.: Analytic Methods for Diophantine Equations and Diophantine Inequalities. The University of Michigan, Fall Semester 1962, Ann Arbor Publishers, Ann Arbor (1963). MR 0159786 | Zbl 1089.11500
[8] Languasco, A., Zaccagnini, A.: On a ternary Diophantine problem with mixed powers of primes. Acta Arith. 159 (2013), 345-362. DOI 10.4064/aa159-4-4 | MR 3080797 | Zbl 1330.11063
[10] Ren, X.: On exponential sums over primes and application in Waring-Goldbach problem. Sci. China Ser. A 48 (2005), 785-797. DOI 10.1360/03ys0341 | MR 2158973 | Zbl 1100.11025