[3] Bernardis, A. L., Lorente, M., Riveros, M. S.:
Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions. Math. Inequal. Appl. 14 (2011), 881-895.
DOI 10.7153/mia-14-73 |
MR 2884902 |
Zbl 1245.42009
[4] Bernardis, A. L., Pradolini, G., Lorente, M., Riveros, M. S.:
Composition of fractional Orlicz maximal operators and $A_1$-weights on spaces of homogeneous type. Acta Math. Sin., Engl. Ser. 26 (2010), 1509-1518.
DOI 10.1007/s10114-010-8445-4 |
MR 2661130 |
Zbl 1202.42035
[5] Cruz-Uribe, D., Fiorenza, A.:
The $A_\infty$ property for Young functions and weighted norm inequalities. Houston J. Math. 28 (2002), 169-182.
MR 1876947 |
Zbl 1041.42009
[7] Cruz-Uribe, D., Pérez, C.:
On the two-weight problem for singular integral operators. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 1 (2002), 821-849.
MR 1991004 |
Zbl 1072.42010
[9] Gorosito, O., Pradolini, G., Salinas, O.:
Weighted weak-type estimates for multilinear commutators of fractional integrals on spaces of homogeneous type. Acta Math. Sin., Engl. Ser. 23 (2007), 1813-1826.
DOI 10.1007/s10114-005-0741-z |
MR 2352296 |
Zbl 1134.42319
[10] Gorosito, O., Pradolini, G., Salinas, O.:
Boundedness of the fractional maximal operator on variable exponent Lebesgue spaces: a short proof. Rev. Unión Mat. Argent. 53 (2012), 25-27.
MR 2987152 |
Zbl 1256.42030
[11] Hardy, G. H., Littlewood, J. E., Pólya, G.:
Inequalities. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1988).
MR 0944909 |
Zbl 0634.26008
[21] Pérez, C.:
On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted $L^p$-spaces with different weights. Proc. Lond. Math. Soc., III. Ser. 71 (1995), 135-157.
DOI 10.1112/plms/s3-71.1.135 |
MR 1327936 |
Zbl 0829.42019