[3] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., Zhou, C.:
The synchronization of chaotic systems. Phys.Rep. 366 (2002), 1-101.
DOI 10.1016/s0370-1573(02)00137-0 |
MR 1913567 |
Zbl 0995.37022
[4] Chen, X., Lu, J.:
Adaptive synchronization of different chaotic systems with fully unknown parameters. Phys. Lett. A 364 (2007), 123-128.
DOI 10.1016/j.physleta.2006.11.092
[5] Chen, D., Zhang, R., Ma, X., Liu, S.:
Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dyn. 69 (2012), 35-55.
DOI 10.1007/s11071-011-0244-7 |
MR 2929853
[9] Hu, J.:
On robust consensus of multi-agent systems with communication delays. Kybernetika 45 (2009), 768-784.
MR 2599111 |
Zbl 1190.93003
[10] Lakshmikantham, V., Leela, S.:
Differential and Integral Inequalities. Academic Press, New York 1969.
MR 0379934
[11] Li, Y., Wu, X., Lu, J., Lü, J.:
Synchronizability of duplex networks. IEEE Trans. Circuits Syst. II 63 (2016), 206-210.
DOI 10.1109/tcsii.2015.2468924
[14] Lu, J., Cao, J., Ho, D.:
Adaptive stabilization and synchronization for chaotic Lur'e systems with time-varying delay. IEEE Trans. Circuits Syst. I 55 (2008), 1347-1356.
DOI 10.1109/tcsi.2008.916462 |
MR 2538304
[15] Ning, D., Wu, X., Lu, J., Lü, J.:
Driving-based generalized synchronization in two-layer networks via pinning control. Chaos 25 (2016), 113104.
DOI 10.1063/1.4935069 |
MR 3419713
[16] Noroozi, N., Roopaei, M., Jahromi, M.:
Adaptive fuzzy sliding mode control scheme for uncertain systems. Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 3978-3992.
DOI 10.1016/j.cnsns.2009.02.015 |
MR 2522900
[17] Pan, L., Zhou, W., Fang, J., Li, D.:
A novel active pinning control for synchronization and anti-synchronization of new uncertain unified chaotic systems. Nonlinear Dyn. 62 (2010), 417-425.
DOI 10.1007/s11071-010-9728-0 |
MR 2737004
[19] Pototsky, A., Janson, N.:
Synchronization of a large number of continuous one-dimensional stochastic elements with time-delayed mean-field coupling. Physica D 238 (2009), 175-183.
DOI 10.1016/j.physd.2008.09.010 |
MR 2516337
[20] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.:
Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 2853-2868.
DOI 10.1016/j.cnsns.2010.09.038 |
MR 2772300 |
Zbl 1221.93131
[21] Roopaei, M., Jahromi, M.:
Synchronization of two different chaotic systems using novel adaptive fuzzy sliding mode control. Chaos 18 (2008), 033133.
DOI 10.1063/1.2980046 |
MR 2464309
[23] Shi, H., Sun, Y., Miao, L., Duan, Z.:
Outer synchronization of uncertain complex delayed networks with noise coupling. Nonlinear Dyn. 85 (2016), 2437-2448.
DOI 10.1007/s11071-016-2836-8 |
MR 3537059
[26] Shi, X., Wang, Z.:
The alternating between complete synchronization and hybrid synchronization of hyperchaotic Lorenz system with time delay. Nonlinear Dyn. 69 (2012),1177-1190.
DOI 10.1007/s11071-012-0339-9 |
MR 2943378
[27] Sun, W., Huang, C., Lü, J., Li, X.:
Velocity synchronization of multi-agent systems with mismatched parameters via sampled position data. Chaos 26 (2016), 023106.
DOI 10.1063/1.4941373 |
MR 3457920
[28] Sun, Y., Li, W., Zhao, D.:
Outer synchronization between two complex dynamical networks with discontinuous coupling. Chaos 22 (2012), 043125.
DOI 10.1063/1.4941373 |
MR 3388687
[29] Sun, Y., Li, W., Zhao, D.:
Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos 23 (2012), 023152.
DOI 10.1063/1.4731265 |
MR 3388569
[30] Tan, S., Lü, J., Lin, Z.:
Emerging behavioral consensus of evolutionary dynamics on complex networks. SIAM J. Control Optim. 54 (2016), 3258-3272.
DOI 10.1137/151004276 |
MR 3580811
[31] Tan, S., Wang, Y., Lü, J.:
Analysis and control of networked game dynamics via a microscopic deterministic approach. IEEE Trans. Automat. Control 61 (2016), 4118-4124.
DOI 10.1109/tac.2016.2545106 |
MR 3582527
[34] Yu, W., Lü, J., Yu, X., Chen, G.:
Distributed adaptive control for synchronization in directed complex network. SIAM J. Control Optim 53 (2015), 2980-3005.
DOI 10.1137/140970781 |
MR 3396387
[35] Zhang, H., Huang, W., Wang, Z., Chai, T.:
Adaptive synchronization between two different chaotic systems with unknown parameters. Phys. Lett.A 350 (2006), 363-366.
DOI 10.1016/j.physleta.2005.10.033
[37] Zhou, J., Juan, C., Lu, J., Lü, J.: On applicability of auxiliary system approach to detect generalized synchronization in complex networks. IEEE Trans. Automat. Control 99 (2016), 1-6.