Previous |  Up |  Next

Article

Keywords:
time-delayed system; complete synchronization; discontinuous coupling
Summary:
This paper concerns the synchronization of time-delayed systems with periodic on-off coupling. Based on the stability theory and the comparison theorem of time-delayed differential equations, sufficient conditions for complete synchronization of systems with constant delay and time-varying delay are established. Compared with the results based on the Krasovskii-Lyapunov method, the sufficient conditions established in this paper are less restrictive. The theoretical results show that two time-delayed systems can achieve complete synchronization when the average coupling strength is sufficiently large. Numeric evidence shows that the synchronization speed depends on the coupling strength, on-off rate and time delay.
References:
[1] Aghababa, M., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model. 35 (2011), 3080-3091. DOI 10.1016/j.apm.2010.12.020 | MR 2776263 | Zbl 1219.93023
[2] Akhmet, M.: Self-synchronization of the integrate-and-fire pacemaker model with continuous couplings. Nonlinear Anal. Hybrid Syst. 6 (2012), 730-740. DOI 10.1016/j.nahs.2011.07.003 | MR 2854910
[3] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., Zhou, C.: The synchronization of chaotic systems. Phys.Rep. 366 (2002), 1-101. DOI 10.1016/s0370-1573(02)00137-0 | MR 1913567 | Zbl 0995.37022
[4] Chen, X., Lu, J.: Adaptive synchronization of different chaotic systems with fully unknown parameters. Phys. Lett. A 364 (2007), 123-128. DOI 10.1016/j.physleta.2006.11.092
[5] Chen, D., Zhang, R., Ma, X., Liu, S.: Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dyn. 69 (2012), 35-55. DOI 10.1007/s11071-011-0244-7 | MR 2929853
[6] Erban, R., Haskovec, J., Sun, Y.: A Cucker-Smale model with noise and delay. SIAM J. Appl. Math. 76 (2016), 1535-1557. DOI 10.1137/15m1030467 | MR 3534479
[7] Ghosh, D.: Projective synchronization in multiple modulated time-delayed systems with adaptive scaling factor. Nonlinear Dyn. 62 (2010), 751-759. DOI 10.1007/s11071-010-9759-6 | MR 2745937
[8] Hmamed, A.: Further results on the delay-independent asymptotic stability of Linear systems. Int. J. Syst. Sci. 22 (1991), 1127-1132. DOI 10.1080/00207729108910686 | MR 1108275
[9] Hu, J.: On robust consensus of multi-agent systems with communication delays. Kybernetika 45 (2009), 768-784. MR 2599111 | Zbl 1190.93003
[10] Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities. Academic Press, New York 1969. MR 0379934
[11] Li, Y., Wu, X., Lu, J., Lü, J.: Synchronizability of duplex networks. IEEE Trans. Circuits Syst. II 63 (2016), 206-210. DOI 10.1109/tcsii.2015.2468924
[12] Lin, W.: Adaptive chaos control and synchronization in only locally Lipschitz systems. Phys. Lett. A 372 (2008), 3195-3200. DOI 10.1016/j.physleta.2008.01.038 | MR 2414269
[13] Lin, J., Yan, J.: Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller. Nonlinear Anal.: Real World Appl. 10 (2009), 1151-1159. DOI 10.1016/j.nonrwa.2007.12.005 | MR 2474288 | Zbl 1167.37329
[14] Lu, J., Cao, J., Ho, D.: Adaptive stabilization and synchronization for chaotic Lur'e systems with time-varying delay. IEEE Trans. Circuits Syst. I 55 (2008), 1347-1356. DOI 10.1109/tcsi.2008.916462 | MR 2538304
[15] Ning, D., Wu, X., Lu, J., Lü, J.: Driving-based generalized synchronization in two-layer networks via pinning control. Chaos 25 (2016), 113104. DOI 10.1063/1.4935069 | MR 3419713
[16] Noroozi, N., Roopaei, M., Jahromi, M.: Adaptive fuzzy sliding mode control scheme for uncertain systems. Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 3978-3992. DOI 10.1016/j.cnsns.2009.02.015 | MR 2522900
[17] Pan, L., Zhou, W., Fang, J., Li, D.: A novel active pinning control for synchronization and anti-synchronization of new uncertain unified chaotic systems. Nonlinear Dyn. 62 (2010), 417-425. DOI 10.1007/s11071-010-9728-0 | MR 2737004
[18] Pecora, L., Carroll, T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824. DOI 10.1103/physrevlett.64.821 | MR 1038263 | Zbl 1098.37553
[19] Pototsky, A., Janson, N.: Synchronization of a large number of continuous one-dimensional stochastic elements with time-delayed mean-field coupling. Physica D 238 (2009), 175-183. DOI 10.1016/j.physd.2008.09.010 | MR 2516337
[20] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 2853-2868. DOI 10.1016/j.cnsns.2010.09.038 | MR 2772300 | Zbl 1221.93131
[21] Roopaei, M., Jahromi, M.: Synchronization of two different chaotic systems using novel adaptive fuzzy sliding mode control. Chaos 18 (2008), 033133. DOI 10.1063/1.2980046 | MR 2464309
[22] Roopaei, M., Sahraei, B., Lin, T.: Adaptive sliding mode control in a novel class of chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 4158-4170. DOI 10.1016/j.cnsns.2010.02.017 | MR 2652685 | Zbl 1222.93124
[23] Shi, H., Sun, Y., Miao, L., Duan, Z.: Outer synchronization of uncertain complex delayed networks with noise coupling. Nonlinear Dyn. 85 (2016), 2437-2448. DOI 10.1007/s11071-016-2836-8 | MR 3537059
[24] Shi, H., Sun, Y., Zhao, D.: Synchronization of chaotic systems with on-off periodic coupling. Phys. Scr. 88 (2013), 045003. DOI 10.1088/0031-8949/88/04/045003
[25] Shi, H., Sun, Y., Zhao, D.: Synchronization of two different chaotic systems with discontinuous coupling. Nonlinear Dyn. 75 (2014), 817-827. DOI 10.1007/s11071-013-1106-2 | MR 3164631
[26] Shi, X., Wang, Z.: The alternating between complete synchronization and hybrid synchronization of hyperchaotic Lorenz system with time delay. Nonlinear Dyn. 69 (2012),1177-1190. DOI 10.1007/s11071-012-0339-9 | MR 2943378
[27] Sun, W., Huang, C., Lü, J., Li, X.: Velocity synchronization of multi-agent systems with mismatched parameters via sampled position data. Chaos 26 (2016), 023106. DOI 10.1063/1.4941373 | MR 3457920
[28] Sun, Y., Li, W., Zhao, D.: Outer synchronization between two complex dynamical networks with discontinuous coupling. Chaos 22 (2012), 043125. DOI 10.1063/1.4941373 | MR 3388687
[29] Sun, Y., Li, W., Zhao, D.: Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos 23 (2012), 023152. DOI 10.1063/1.4731265 | MR 3388569
[30] Tan, S., Lü, J., Lin, Z.: Emerging behavioral consensus of evolutionary dynamics on complex networks. SIAM J. Control Optim. 54 (2016), 3258-3272. DOI 10.1137/151004276 | MR 3580811
[31] Tan, S., Wang, Y., Lü, J.: Analysis and control of networked game dynamics via a microscopic deterministic approach. IEEE Trans. Automat. Control 61 (2016), 4118-4124. DOI 10.1109/tac.2016.2545106 | MR 3582527
[32] Wu, J., Ma, Z., Sun, Y., Liu, F.: Finite-time synchronization of chaotic systems with noise perturbation. Kybernetika 51 (2015), 137-149. DOI 10.14736/kyb-2015-1-0137 | MR 3333837
[33] Yan, J., Hung, M., Chiang, T., Yang, Y.: Robust synchronization of chaotic systems via adaptive sliding mode control. Phys. Lett. A 356 (2006), 220-225. DOI 10.1016/j.physleta.2006.03.047 | Zbl 1160.37352
[34] Yu, W., Lü, J., Yu, X., Chen, G.: Distributed adaptive control for synchronization in directed complex network. SIAM J. Control Optim 53 (2015), 2980-3005. DOI 10.1137/140970781 | MR 3396387
[35] Zhang, H., Huang, W., Wang, Z., Chai, T.: Adaptive synchronization between two different chaotic systems with unknown parameters. Phys. Lett.A 350 (2006), 363-366. DOI 10.1016/j.physleta.2005.10.033
[36] Zhang, G., Liu, Z., Zhang, J.: Adaptive synchronization of a class of continuous chaotic systems with uncertain parameters. Phys. Lett. A 372 (2008), 447-450. DOI 10.1016/j.physleta.2007.07.080 | MR 2381824
[37] Zhou, J., Juan, C., Lu, J., Lü, J.: On applicability of auxiliary system approach to detect generalized synchronization in complex networks. IEEE Trans. Automat. Control 99 (2016), 1-6.
Partner of
EuDML logo