Previous |  Up |  Next

Article

Keywords:
distributed optimization; event-triggered strategy; multi-agent systems; resource allocation
Summary:
This paper is concerned with solving the distributed resource allocation optimization problem by multi-agent systems over undirected graphs. The optimization objective function is a sum of local cost functions associated to individual agents, and the optimization variable satisfies a global network resource constraint. The local cost function and the network resource are the private data for each agent, which are not shared with others. A novel gradient-based continuous-time algorithm is proposed to solve the distributed optimization problem. We take an event-triggered communication strategy and an event-triggered gradient measurement strategy into account in the algorithm. With strongly convex cost functions and locally Lipschitz gradients, we show that the agents can find the optimal solution by the proposed algorithm with exponential convergence rate, based on the construction of a suitable Lyapunov function. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed scheme.
References:
[1] Beck, A., Nedić, A., Ozdaglar, A., Teboulle, M.: An $O(1/k)$ gradient method for network resource allocation problems. IEEE Trans. Control Network Systems 1 (2014), 64-74. DOI 10.1109/tcns.2014.2309751 | MR 3245002
[2] Chen, W., Ren, W.: Event-triggered zero-gradient-sum distributed consensus optimization over directed networks. Automatica 65 (2016), 90-97. DOI 10.1016/j.automatica.2015.11.015 | MR 3447697 | Zbl 1328.93167
[3] Deng, Z., Wang, X., Hong, Y.: Distributed optimization design with triggers for disturbed continuous-time multi-agent systems. IET Control Theory Appl. 11 (2017), 282-290. DOI 10.1049/iet-cta.2016.0795 | MR 3675134
[4] Ghadimi, E., Shames, I., Johansson, M.: Multi-step gradient methods for networked optimization. IEEE Trans. Signal Processing 61 (2013), 5417-5429. DOI 10.1109/tsp.2013.2278149
[5] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. DOI 10.1007/978-1-4613-0163-9 | MR 1829620 | Zbl 0968.05002
[6] Gao, Y., Wang, L.: Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology. IEEE Trans. Automat. Control 56 (2011), 1226-1231. DOI 10.1109/tac.2011.2112472 | MR 2815935
[7] Ho, Y. C., Servi, L., Suri, R.: A class of center-free resource allocation algorithms. Large Scale Systems 1 (1980), 51-62. MR 0617154
[8] Khalil, H. K.: Nonlinear Systems. Third edition. Prentice Hall, New Jersey 2002.
[9] Kia, S. S., Cortés, J., Martínez, S.: Distributed convex optimization via continuous-time coordinate alorithms with discrete-time communication. Automatica 55 (2015), 254-264. DOI 10.1016/j.automatica.2015.03.001 | MR 3336675
[10] Lehmann, D., Lunze, J.: Event-based control with communication delays and packet losses. Int. J. Control 85 (2012), 563-577. DOI 10.1080/00207179.2012.659760 | MR 2913571
[11] Lakshmanan, H., Farias, D. P.: Decentralized resource allocation in dynamic networks of agents. SIAM J. Optim. 19 (2008), 911-940. DOI 10.1137/060662228 | MR 2448920
[12] Hu, J., Chen, G., Li, H.: Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays. Kybernetika 47 (2011), 630-643. MR 2884865 | Zbl 1227.93008
[13] Nedić, A., Ozdaglar, A., Parrilo, P. A.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55 (2010), 922-938. DOI 10.1109/tac.2010.2041686 | MR 2654432
[14] Lou, Y., Shi, G., Johansson, K., Hong, Y.: Approximate projected consensus for convex interesection computation: convergence analysis and critical error angle. IEEE Trans. Automat. Control 59 (2014), 1722-1736. DOI 10.1109/tac.2014.2309261 | MR 3232068
[15] Rockafellar, R. T.: Convex Analysis. Princeton University Press, Princeton 1972. MR 0274683 | Zbl 1011.49013
[16] Ruszczynski, A. P.: Nonlinear Optimization. Princeton University Press, Princeton 2006. MR 2199043
[17] Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Automat. Control 52 (2007), 1680-1685. DOI 10.1109/tac.2007.904277 | MR 2352444
[18] Wang, X., Yi, P., Hong, Y.: Dynamic optimization for multi-agent systems with external disturbances. Control Theory Technol. 12 (2014), 132-138. DOI 10.1007/s11768-014-0036-y | MR 3199533
[19] Wang, X., Deng, Z., Ma, S., Du, X.: Event-triggered design for multi-agent optimal consensus of Euler-Lagrangian systems. Kybernetika 1 (2017), 179-194. MR 3638563
[20] Xiao, L., Boyd, S.: Optimal scaling of a gradient method for distributed resource allocation. J. Optim. Theory and Appl. 129 (2006), 469-488. DOI 10.14736/kyb-2017-1-0179 | MR 2281152
[21] Zhang, Y., Hong, Y.: Distributed event-triggered tracking control of multi-agent systems with active leader. In: Proc. 10th IEEE World Congress on Intelligent Control and Automation 2012, pp. 1453-1458. DOI 10.1109/wcica.2012.6358108
[22] Zhang, Y., Lou, Y., Hong, Y., Xie, L.: Distributed projection-based algorithms for source localization in wireless sensor networks. IEEE Trans. Wireless Communications 14 (2015), 3131-3142. DOI 10.1109/twc.2015.2402672 | MR 2960500
[23] Yi, P., Hong, Y., Liu, F.: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems. Automatica 74 (2016), 259-269. DOI 10.1016/j.automatica.2016.08.007 | MR 3569392
Partner of
EuDML logo