[1] Ashyralyev, A., Gercek, O.:
Nonlocal boundary value problem for elliptic-parabolic differential and difference equations. Discrete Dyn. Nat. Soc., 2008, 16p,
MR 2457148
[3] Beridze, V., Devadze, D., Meladze, H.:
On one nonlocal boundary value problem for quasilinear differential equations. Proceedings of A. Razmadze Mathematical Institute, 165, 2014, 31-39,
MR 3300597 |
Zbl 1315.35101
[4] Berikelashvili, G.:
Construction and analysisi of difference schemes of the rate convergence. Memoirs of Diff. Euqat. and Math. Physics, 38, 2006, 1-36,
MR 2258555
[5] Berikelashvili, G.:
On the solvability of a nonlocal boundary value problem in the weighted Sobolev spaces. Proc. A. Razmadze Math. Inst., 119, 1999, 3-11,
MR 1710953 |
Zbl 0963.35045
[6] Berikelashvili, G.:
To a nonlocal generalization of the Dirichlet problem. Journal of Inequalities and Applications, 2006, 1, 2006, 6p, Art.ID 93858.
MR 2215469 |
Zbl 1108.35040
[7] Bitsadze, A.V., Samarskií, A.A.:
On some simple generalizations of linear elliptic boundary problems. Dokl. Akad. Nauk SSSR, 185, 1969, 739-740, Translation in Sov. Math. Dokl., 10 (1969), 398--400.
MR 0247271 |
Zbl 0187.35501
[9] Canon, J.R.:
The solution of heat equation subject to the specification of energy. Quart. Appl. Math., 21, 2, 1963, 155-160,
DOI 10.1090/qam/160437 |
MR 0160437
[10] Carleman, T.:
Sur la théorie des équations intégrales et ses applications. 1932, F{ü}ssli, Zurich,
Zbl 0006.40001
[11] Courant, R., Hilbert, D.:
Methods of mathematical physics. 1953, Interscience Publishers, New York,
MR 0065391 |
Zbl 0053.02805
[13] Beridze, D. Sh. Devadze and V. Sh.:
Optimality conditions for quasi-linear differential equations with nonlocal boundary conditions. Uspekhi Mat. Nauk, 68, 4, 2013, 179-180, Translation in Russian Math. Surveys, 68 (2013), 773--775.
MR 3154819
[14] Devadze, D., Dumbadze, M.:
An Optimal Control Problem for a Nonlocal Boundary Value Problem. Bulletin of The Georgian National Academy Of Sciences, 7, 2, 2013, 71-74,
MR 3136884 |
Zbl 1311.49054
[15] Diaz, J.I., Rakotoson, J-M.:
On a non-local stationary free-boundary problem arising in the confinement of a plasma in a stellarator geometry. Arch.Rational. Mech. Anal., 134, 1, 1996, 53-95,
DOI 10.1007/BF00376255 |
MR 1392309
[16] Gordeziani, D.G.:
On methods for solving a class of non-local boundary-value problems. Ed. TSU, Tbilisi, 1981, 32p,
MR 0626523
[17] Gordeziani, D.G., Avalishvili, G.A.:
On the constructing of solutions of the nonlocal initial boundary value problems for one dimensional medium oscillation equations. Mathem. Mod., 12, 1, 2000, 93-103,
MR 1773208
[18] Gordeziani, D.G., Djioev, T.Z.:
On solvability of one boundary value problem for a nonlinear elliptic equations. Bull. Georgian Acad. Sci, 68, 2, 1972, 189-292,
MR 0372414
[19] Gordeziani, G., Gordeziani, N., Avalishvili, G.:
Non-local boundary value problem for some partial differential equations. Bulletin of the Georgian Academy of Sciences, 157, 1, 1998, 365-369,
MR 1652066
[20] Gordezian, D., Gordeziani, E., Davitashvili, T., Meladze, G.: On the solution of some non-local boundary and initial-boundary value problems. GESJ: Computer Science and Telecommunications, 2010, 3, 161-169,
[21] Gulin, A.V., Marozova, V.A.:
A family of selfjoint difference schemes. Diff. Urav., 44, 9, 2008, 1249-1254,
MR 2484534
[22] Gurevich, P.L.:
Asymptotics of Solution for nonlocal elliptic problems in plane bounded domains. Functional Differential Equations, 10, 1-2, 2003, 175-214,
MR 2017408
[23] Gushchin, A.K., Mikhailov, V.P.:
On the stability of nonlocal problems for a second order elliptic equation. Math. Sb., 185, 1, 1994, 121-160,
MR 1264079
[24] Il'in, V.A., Moiseev, E.I.:
A two-dimensional nonlocal boundary value problem for the Poisson operator in the differential and the difference interpretation. Mat. Model., 2, 8, 1990, 139-156, (Russian).
MR 1086120
[25] Ionkin, N.I.:
Solution of boundary-value problem in heat-conduction theory with non-classical boundary conditions. Diff, Urav., 13, 1977, 1177-1182,
MR 0603292
[26] Kapanadze, D.V.:
On a nonlocal Bitsadze-Samarskiĭ boundary value problem. Differentsial'nye Uravneniya, 23, 3, 1987, 543-545, (Russian).
MR 0886591
[27] Mandzhavidze, G.F., Tuchke, V.:
Some boundary value problems for first-order nonlinear differential systems on the plane. Boundary value problems of the theory of generalized analytic functions and their applications Tbilis. Gos. Univ., Tbilisi, 1983, 79-124, (Russian).
MR 0745292
[28] Paneyakh, B.P:
Some nonlocal boundary value problems for linear differential operators. Mat. Zametki, 35, 3, 1984, 425-434, (Russian).
MR 0741809
[30] Sapagovas, M.P.:
A difference method of increased order of accuracy for the Poisson equation with nonlocal conditions. Differential Equations, 44, 7, 2008, 1018-1028,
DOI 10.1134/S0012266108070148 |
MR 2479950
[31] Sapagovas, M.P., Chegis, R.Yu.:
On some Boundary value problems with a non-local condition. Differentsial'nye Uravneniya, 23, 7, 1987, 1268-1274, (Russian).
MR 0903982
[32] Shakeris, F., Dehghan, M.:
The method of lines for solution of the one-dimensional wave equation subject to an integral consideration. Computers & Mathematics with Applications, 56, 9, 2008, 2175-2188,
DOI 10.1016/j.camwa.2008.03.055 |
MR 2466739
[33] Shelukin, V.V.:
A non-local in time model for radionuclide propagation in Stokes fluid. Dinamika Splosh. Sredy, 107, 1993, 180-193,
MR 1305005
[34] Skubachevskin, A.L.:
On a spectrum of some nonlocal boundary value problems. Mat. Sb., 117, 7, 1982, 548-562, (Russian).
MR 0651145
[35] Vekua, I.N.:
Generalized analytic functions. Second edition. 1988, Nauka, Moscow, (Russian).
MR 0977975
[36] Vasylyk, V.B.: Exponentially convergent method for the $m$-point nonlocal problem for an elliptic differential equation in banach space. J. Numer. Appl. Math., 105, 2, 2011, 124-135,