Previous |  Up |  Next

Article

Keywords:
Geometry of numbers; critical determinant; simultaneous Diophantine approximation
Summary:
In the problem of (simultaneous) Diophantine approximation in~$\mathbb{R}^3$ (in the spirit of Hurwitz's theorem), lower bounds for the critical determinant of the special three-dimensional body $$ K_2:\quad (y^2+z^2)(x^2+y^2+z^2)\le 1 $$ play an important role; see [1], [6]. This article deals with estimates from below for the critical determinant $\Delta (K_c)$ of more general star bodies $$ K_c:\quad (y^2+z^2)^{c/2}(x^2+y^2+z^2)\le 1, $$ where $c$ is any positive constant. These are obtained by inscribing into $K_c$ either a double cone, or an ellipsoid, or a double paraboloid, depending on the size of $c$.
References:
[1] Armitage, J.V.: On a method of Mordell in the geometry of numbers. Mathematika, 2, 2, 1955, 132-140, DOI 10.1112/S0025579300000772 | MR 0077574 | Zbl 0066.03602
[2] Davenport, H., Mahler, K.: Simultaneous Diophantine approximation. Duke Math. J., 13, 1946, 105-111, DOI 10.1215/S0012-7094-46-01311-7 | MR 0016068 | Zbl 0060.12000
[3] Davenport, H.: On a theorem of Furtwängler. J. London Math.Soc., 30, 1955, 185-195, MR 0067943 | Zbl 0064.04501
[4] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers. 1987, North Holland, Amsterdam, MR 0893813 | Zbl 0611.10017
[5] Minkowski, H.: Dichteste gitterförmige Lagerung kongruenter Körper. Nachr. Kön. Ges. Wiss. Göttingen, 1904, 311-355,
[6] Nowak, W.G.: The critical determinant of the double paraboloid and Diophantine approximation in $\mathbb{R}^3$ and $\mathbb{R}^4$. Math. Pannonica, 10, 1999, 111-122, MR 1678107
[7] Nowak, W.G.: Diophantine approximation in $\mathbb{R}^s$: On a method of Mordell and Armitage. Algebraic number theory and Diophantine analysis. Proceedings of the conference held in Graz, Austria, August 30 to September 5, 1998, W. de Gruyter, Berlin, 2000, 339-349, MR 1770472
[8] Nowak, W.G.: Lower bounds for simultaneous Diophantine approximation constants. Comm. Math., 22, 1, 2014, 71-76, MR 3233728 | Zbl 1368.11063
[9] Nowak, W.G.: Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem. T.M. Rassias and P.M. Pardalos (eds.), Essays in mathematics and its applications, 2016, 181-197, Springer, Switzerland, MR 3526920
[10] Nowak, W.G.: On the critical determinants of certain star bodies. Comm. Math., 25, 1, 2017, 5-11, DOI 10.1515/cm-2017-0002 | MR 3667072
[11] Ollerenshaw, K.: The critical lattices of a sphere. J. London Math. Soc., 23, 1949, 297-299, MR 0028353 | Zbl 0036.31103
[12] Whitworth, J.V.: The critical lattices of the double cone. Proc. London Math. Soc., 2, 1, 1951, 422-443, DOI 10.1112/plms/s2-53.6.422 | MR 0042452 | Zbl 0044.04302
Partner of
EuDML logo