Previous |  Up |  Next

Article

Keywords:
$A_\infty $ structures; transfer; homological perturbation lemma
Summary:
The present article is devoted to the study of transfers for $A_\infty $ structures, their maps and homotopies, as developed in [7]. In particular, we supply the proofs of claims formulated therein and provide their extension by comparing them with the former approach based on the homological perturbation lemma.
References:
[1] Crainic, M.: On the perturbation lemma, and deformations. 2004, ArXiv preprint math.AT/0403266.
[2] Hatcher, A.: Algebraic topology. Cambridge University Press, Cambridge, New York, 2002. MR 1867354 | Zbl 1044.55001
[3] Huebschmann, J.: On the construction of $A_\infty $-structures. Georgian Math. J. 17 (1) (2010), 161–202. MR 2640649 | Zbl 1202.55007
[4] Keller, B.: Introduction to $A_\infty $ algebras and modules. Homology Homotopy Appl. 3 (1) (2001), 1–35. MR 1905779
[5] Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry. (Seoul, 2000), World Sci. Publ., River Edge, NJ (2001), 203–263. MR 1882331
[6] Lefèvre-Hasegawa, K.: Sur les $A_\infty $ catégories. Ph.D. thesis, Université Paris 7 – Denis Diderot, 2003.
[7] Markl, M.: Transferring $A_\infty $ (strongly homotopy associative) structures. Rend. Circ. Mat. Palermo (2) Suppl. (2006), no. 79, 139–151. MR 2287133 | Zbl 1112.18007
[8] Markl, M., Shnider, S., Stasheff, J.D.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, American Mathematical Society, Providence, Rhode Island, 2002. MR 1898414 | Zbl 1017.18001
[9] Merkulov, S.: Strongly Homotopy Algebras of a Kähler Manifold. Internat. Math. Res. Notices (1999), no. 3, 153–164. DOI 10.1155/S1073792899000070
[10] Prouté, A.: $A_\infty $-structures: Modèles Minimaux de Baues-Lemaire et Kadeishvili et Homologie des Fibrations. Ph.D. thesis, Université Paris 7 – Denis Diderot, 1986.
[11] Weibel, C.A.: An introduction to homological algebra. Cambridge University Press, 1995. Zbl 0834.18001
Partner of
EuDML logo