Previous |  Up |  Next

Article

Keywords:
uniqueness; meromorphic function; weighted sharing; nonlinear differential polynomials
Summary:
This paper studies the uniqueness of meromorphic functions $$f^{n}\prod _{i=1}^{k}(f^{(i)})^{n_{i}}\quad \mbox {and}\quad g^{n}\prod _{i=1}^{k}(g^{(i)})^{n_{i}}$$ that share two values, where $n, n_{k}, k\in \mathbb {N}$, $n_{i}\in \mathbb {N}\cup \{0\}$, $i=1,2,\ldots ,k-1$. The results significantly rectify, improve and generalize the results due to Cao and Zhang (2012).
References:
[1] Banerjee, A.: On a question of Gross. J. Math. Anal. Appl. 327 (2007), 1273-1283. DOI 10.1016/j.jmaa.2006.04.078 | MR 2280003 | Zbl 1115.30029
[2] Bergweiler, W., Eremenko, A.: On the singularities of the inverse to a meromorphic function of finite order. Rev. Mat. Iberoam. 11 (1995), 355-373. DOI 10.4171/RMI/176 | MR 1344897 | Zbl 0830.30016
[3] Cao, Y.-H., Zhang, X.-B.: Uniqueness of meromorphic functions sharing two values. J. Inequal. Appl. (electronic only) 2012 (2012), Article ID 100, 10 pages. DOI 10.1186/1029-242X-2012-100 | MR 2946490 | Zbl 1291.30193
[4] Chen, H. H., Fang, M. L.: The value distribution of $f^{n}f'$. Sci. China Ser. A. 38 (1995), 789-798. DOI 10.1360/ya1995-38-7-789 | MR 1360682 | Zbl 00817801
[5] Fang, M., Hua, X.: Entire functions that share one value. J. Nanjing Univ., Math. Biq. 13 (1996), 44-48. MR 1411806 | Zbl 0899.30022
[6] Fang, M., Qiu, H.: Meromorphic functions that share fixed-points. J. Math. Anal. Appl. 268 (2002), 426-439. DOI 10.1006/jmaa.2000.7270 | MR 1896207 | Zbl 1030.30028
[7] Frank, G.: Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen. Math. Z. 149 (1976), 29-36. DOI 10.1007/BF01301627 | MR 0422615 | Zbl 0312.30032
[8] Hayman, W. K.: Meromorphic functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). MR 0164038 | Zbl 0115.06203
[9] Köhler, L.: Meromorphic functions sharing zeros and poles and also some of their derivatives sharing zeros. Complex Variables, Theory Appl. 11 (1989), 39-48. DOI 10.1080/17476938908814322 | MR 0998240 | Zbl 0637.30029
[10] Lahiri, I.: Weighted value sharing and uniqueness of meromorphic functions. Complex Variables, Theory Appl. 46 (2001), 241-253. DOI 10.1080/17476930108815411 | MR 1869738 | Zbl 1025.30027
[11] Lahiri, I., Dewan, S.: Value distribution of the product of a meromorphic function and its derivative. Kodai Math. J. 26 (2003), 95-100. DOI 10.2996/kmj/1050496651 | MR 1966685 | Zbl 1077.30025
[12] Lahiri, I., Sarkar, A.: Nonlinear differential polynomials sharing 1-points with weight two. Chin. J. Contemp. Math. 25 (2004), 325-334. MR 2159311 | Zbl 1069.30051
[13] Xu, J., Yi, H., Zhang, Z.: Some inequalities of differential polynomials. Math. Inequal. Appl. 12 (2009), 99-113. DOI 10.7153/mia-12-09 | MR 2489354 | Zbl 1169.30314
[14] Yamanoi, K.: The second main theorem for small functions and related problems. Acta Math. 192 (2004), 225-294. DOI 10.1007/BF02392741 | MR 2096455 | Zbl 1203.30035
[15] Yang, C. C.: On deficiencies of differential polynomials II. Math. Z. 125 (1972), 107-112. DOI 10.1007/BF01110921 | MR 0294642 | Zbl 0217.38402
[16] Yang, C.-C., Hua, X.: Uniqueness and value-sharing of meromorphic functions. Ann. Acad. Sci. Fenn., Math. 22 (1997), 395-406. MR 1469799 | Zbl 0890.30019
[17] Yang, C. C., Yi, H. X.: Uniqueness Theory of Meromorphic Functions. Mathematics and its Applications 557. Kluwer Academic Publishers, Dordrecht (2003). DOI 10.1007/978-94-017-3626-8 | MR 2105668 | Zbl 1070.30011
[18] Yang, L.: Value Distribution Theory. Springer, Berlin; Science Press, Beijing (1993). DOI 10.1007/978-3-662-02915-2 | MR 1301781 | Zbl 0790.30018
[19] Yi, H. X.: On characteristic function of a meromorphic function and its derivative. Indian J. Math. 33 (1991), 119-133. MR 1140875 | Zbl 0799.30018
[20] Zhang, Q.: Meromorphic function that shares one small function with its derivative. \mbox{JIPAM}, J. Inequal. Pure Appl. Math. (electronic only) 6 (2005), Article No. 116, 13 pages. MR 2178297 | Zbl 1097.30033
Partner of
EuDML logo