Previous |  Up |  Next

Article

Keywords:
tri-quadratic functional equation; Lipschitz space; stability
Summary:
In this paper, we consider Lipschitz conditions for tri-quadratic functional equations. We introduce a new notion similar to that of the left invariant mean and prove that a family of functions with this property can be approximated by tri-quadratic functions via a Lipschitz norm.
References:
[1] Czerwik, S., Dłutek, K.: Stability of the quadratic functional equation in Lipschitz spaces. J. Math. Anal. Appl. 293 (2004), 79-88. DOI 10.1016/j.jmaa.2003.12.034 | MR 2052533 | Zbl 1052.39030
[2] Ebadian, A., Ghobadipour, N., Nikoufar, I., Gordji, M. Eshaghi: Approximation of the cubic functional equations in Lipschitz spaces. Anal. Theory Appl. 30 (2014), 354-362. DOI 10.4208/ata.2014.v30.n4.2 | MR 3303361 | Zbl 1340.39040
[3] Jung, S.-M., Sahoo, P. K.: Hyers-Ulam stability of the quadratic equation of Pexider type. J. Korean Math. Soc. 38 (2001), 645-656. MR 1826928 | Zbl 0980.39023
[4] Lee, J. R., Jang, S.-Y., Park, C., Shin, D. Y.: Fuzzy stability of quadratic functional equations. Adv. Difference Equ. 2010 (2010), Article ID 412160, 16 pages. DOI 10.1155/2010/412160 | MR 2652450 | Zbl 1192.39021
[5] Nikoufar, I.: Lipschitz approximation of the $n$-quadratic functional equations. Mathematica (Cluj) - Tome 57 (2015), 67-74. MR 3611703
[6] Nikoufar, I.: Quartic functional equations in Lipschitz spaces. Rend. Circ. Mat. Palermo, Ser. 2 64 (2015), 171-176. DOI 10.1007/s12215-014-0187-1 | MR 3371402 | Zbl 1328.39046
[7] Nikoufar, I.: Erratum to: Quartic functional equations in Lipschitz spaces. Rend. Circ. Mat. Palermo, Ser. 2 65 (2016), 345-350. DOI 10.1007/s12215-015-0222-x | MR 3535460 | Zbl 06643403
[8] Nikoufar, I.: Lipschitz criteria for bi-quadratic functional equations. Commun. Korean Math. Soc 31 (2016), 819-825. DOI 10.4134/CKMS.c150249 | MR 3570448 | Zbl 1372.39032
[9] Park, C.-G.: On the stability of the quadratic mapping in Banach modules. J. Math. Anal. Appl. 276 (2002), 135-144. DOI 10.1016/S0022-247X(02)00387-6 | MR 1944341 | Zbl 1017.39010
[10] Park, W.-G., Bae, J.-H.: Approximate behavior of bi-quadratic mappings in quasinormed spaces. J. Inequal. Appl. (2010), Article ID 472721, 8 pages. DOI 10.1155/2010/472721 | MR 2665495 | Zbl 1216.39039
[11] Skof, F.: Local properties and approximations of operators. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129 Italian. DOI 10.1007/BF02924890 | MR 0858541 | Zbl 0599.39007
[12] Tabor, J.: Lipschitz stability of the Cauchy and Jensen equations. Result. Math. 32 (1997), 133-144. DOI 10.1007/BF03322533 | MR 1464682 | Zbl 0890.39023
[13] Tabor, J.: Superstability of the Cauchy, Jensen and isometry equations. Result. Math. 35 (1999), 355-379. DOI 10.1007/BF03322824 | MR 1694913 | Zbl 0929.39015
Partner of
EuDML logo