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Abstract. In this paper, we consider Lipschitz conditions for tri-quadratic functional
equations. We introduce a new notion similar to that of the left invariant mean and prove
that a family of functions with this property can be approximated by tri-quadratic functions
via a Lipschitz norm.
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1. Introduction

A generalized stability problem for the quadratic functional equation

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y)

was proved by Skof in [11] for mappings from a normed space to a Banach space.

Czerwik et al. in [1] verified the stability of the quadratic functional equations in

Lipschitz spaces. The Lipschitz stability type problems for some functional equations

were also studied by Tabor, see [12], [13]. In Lipschitz spaces we investigated the

stability of cubic functional equations in [2] and the stability of quartic functional

equations in [7] (see also [6], [5]). The stability problem for the quadratic and

bi-quadratic functional equation has been studied by many mathematicians under

various degrees of generality imposed on the equation or on the underlying space;

see, for example, [3], [4], [10], [9] and the references therein. We obtained Lipschitz

criteria for bi-quadratic functional equations in Lipschitz spaces in [8].

The algebra of Lipschitz functions on a complete metric space plays a role in

noncommutative metric theory similar to that played by the algebra of continuous
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functions on a compact space in noncommutative topology. Let H be an abelian

group and W a real vector space. A function Q : H3 → W is called tri-quadratic

if Q satisfies the system of equations

Q(x+ y, z, w) +Q(x− y, z, w) = 2Q(x, z, w) + 2Q(y, z, w),

Q(x, y + z, w) +Q(x, y − z, w) = 2Q(x, y, w) + 2Q(x, z, w),

Q(x, y, z + w) +Q(x, y, z − w) = 2Q(x, y, z) + 2Q(x, y, w)

for all x, y, z ∈ H, that is, Q is quadratic in each variable. In this paper, we consider

Lipschitz conditions for tri-quadratic functional equations. We prove that a family of

functions satisfying tri-symmetric left invariant mean property can be approximated

by tri-quadratic functions via a Lipschitz norm.

2. Lipschitz conditions for tri-quadratic functional equations

In this section, we introduce the notion of tri-symmetric left invariant mean

(TSLIM in brief) and prove that a family of functions with TSLIM property can

be approximated by tri-quadratic functions via a Lipschitz norm.

A family S of subsets ofW is called linearly invariant if A+αB ∈ S for A,B ∈ S,

α ∈ R and x + A ∈ S for A ∈ S, x ∈ W . For example, the family of all closed

balls with center at zero is a linearly invariant family in a normed vector space. We

denote this family by CB(W). Let L(W) be a linearly invariant family of subsets

of W . ByM(H,L(W)) we denote the family of all functions Q : H → W such that

ImQ ⊂ B for some B ∈ L(W).

Definition 2.1. The function Q is called tri-symmetric if

Q(x, y, z) = Q(y, z, x) = Q(z, x, y) = Q(z, y, x) = Q(x, z, y) = Q(y, x, z)

for all x, y, z ∈ H.

Definition 2.2. We say thatM(H,L(W)) admits a tri-symmetric left invariant

mean (briefly TSLIM), if the family L(W) is linearly invariant and there exists a

linear operator Γ: M(H,L(W)) → W such that

(i) if Qx,y,z ∈ M(H,L(W)) and x, y, z ∈ H, then

Γ[Qx,y,z] = Γ[Qy,z,x] = Γ[Qz,x,y] = Γ[Qz,y,x] = Γ[Qx,z,y] = Γ[Qy,x,z],

(ii) if ImQ ⊂ B for some B ∈ L(W), then Γ[Q] ∈ B,

(iii) if Q ∈ M(H,L(W)) and a ∈ H, then Γ[Qa] = Γ[Q], where Qa(x) = Q(x+a).

338



Definition 2.3. Let ∆: H3 ×H3 → L(W) be a set-valued function such that

∆((x+ a, y + b, z + c), (u + a, v + b, w + c))

= ∆((a+ x, b+ y, c+ z), (a+ u, b+ v, c+ w)) = ∆((x, y, z), (u, v, w))

for all (a, b, c), (x, y, z), (u, v, w) ∈ H3. A function Q : H3 → W is said to be

∆-Lipschitz if

Q(x, y, z)−Q(u, v, w) ∈ ∆((x, y, z), (u, v, w))

for all (x, y, z), (u, v, w) ∈ H3.

Let Q : H3 → W be a function. We consider its tri-quadratic difference as follows:

TQ(x, y, z, w) := 2Q(x, z, w) + 2Q(y, z, w)−Q(x+ y, z, w)−Q(x− y, z, w)

for all x, y, z, w ∈ H.

Theorem 2.4. Let H be an abelian group and let W be a vector space. Assume

that the family M(H,L(W)) admits TSLIM. If F : H3 → W is a function and

TF(t, ·, ·, ·) : H3 → W is∆-Lipschitz for every t ∈ H, then there exists a tri-quadratic

function Q : H3 → W such that F − Q is 1
2∆-Lipschitz. Moreover, if ImTF ⊂ A

for some A ∈ L(W), then Im(F −Q) ⊂ 1
2A.

P r o o f. For every (x, y, z) ∈ H3 we define ϕx(·, y, z) : H → W by

ϕx(·, y, z) :=
1

2
F(·+ x, y, z) +

1

2
F(· − x, y, z)−F(·, y, z).

We prove that Imϕx(·, y, z) ⊆ A for some A ∈ L(W). We have for (x, y, z) ∈ H3,

ϕx(·, y, z) =
1

2
F(·+ x, y, z) +

1

2
F(· − x, y, z)−F(·, y, z)−F(x, y, z)

−
1

2
F(·, y, z)−

1

2
F(·, y, z) + F(·, y, z) + F(0, y, z)

+ F(x, y, z)−F(0, y, z)

=
1

2
TF(·, 0, y, z)−

1

2
TF(·, x, y, z) + F(x, y, z)−F(0, y, z).

By assumption, since TF(t, ·, ·, ·) is ∆-Lipschitz for every t ∈ H, Imϕx(·, y, z) ⊆ A,

where A := 1
2∆((0, y, z), (x, y, z)) + F(x, y, z)−F(0, y, z). The familyM(H,L(W))

admits TSLIM, so there exists a linear operator Γ: M(H,L(W)) → W such that

(i) Γ[ϕx(·, y, z)] = Γ[ϕy(·, z, x)] = Γ[ϕz(·, x, y)] = Γ[ϕy(·, x, z)] = Γ[ϕx(·, z, y)] =

Γ[ϕz(·, y, x)] for every (x, y, z) ∈ H3
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(ii) Γ[ϕx(·, y, z)] ∈ A for some A ∈ L(W) and every (x, y, z) ∈ H3,

(iii) if u ∈ H and ϕu
x(·, y, z) : H → W defined by ϕu

x(·, y, z) := ϕx(·+u, y, z) for every

(x, y, z) ∈ H3, then ϕu
x(·, y, z) ∈ M(H,L(W)) and Γ[ϕu

x(·, y, z)] = Γ[ϕx(·, y, z)].

Define the function Q : H3 → W by Q(x, y, z) := Γ[ϕx(·, y, z)]. In view of prop-

erty (i) of Γ, Q is tri-symmetric. We prove that F − Q is 1
2∆-Lipschitz. Since

TF(t, ·, ·, ·) is ∆-Lipschitz for t ∈ H,

(2.1) TF(t, x, y, z)− TF(t, u, v, w) ∈ ∆((x, y, z), (u, v, w))

for all (x, y, z), (u, v, w) ∈ H3 and so

Im
(1

2
TF(·, x, y, z)−

1

2
TF(·, u, v, w)

)

⊆
1

2
∆((x, y, z), (u, v, w)).

In view of property (ii) of Γ, we find that

Γ
[1

2
TF(·, x, y, z)−

1

2
TF(·, u, v, w)

]

∈
1

2
∆((x, y, z), (u, v, w))

for all (x, y, z), (u, v, w) ∈ H3. Note thatM(H,L(W)) contains constant functions.

Property (ii) of Γ entails that for a constant function C : H → W , Γ[C] = C. For

every (x, y, z) ∈ H3 we define the constant function Cx,y,z : H → W by Cx,y,z(·) :=

F(x, y, z). We see that

(F(x, y, z)−Q(x, y, z))− (F(u, v, w)−Q(u, v, w))

= (Γ[Cx,y,z(·)]− Γ[ϕx(·, y, z)])− (Γ[Cu,v,w(·)] − Γ[ϕu(·, v, w)])

= Γ[Cx,y,z(·) − ϕx(·, y, z)]− Γ[Cu,v,w(·)− ϕu(·, v, w)]

= Γ
[1

2
TF(·, x, y, z)−

1

2
TF(·, u, v, w)

]

for all (x, y, z), (u, v, w) ∈ H3. This shows that

(F(x, y, z)−Q(x, y, z))− (F(u, v, w)−Q(u, v, w)) ∈
1

2
∆((x, y, z), (u, v, w))

for all (x, y, z), (u, v, w) ∈ H3, i.e., F − Q is a 1
2∆-Lipschitz function. Applying

property (iii) of Γ and the definition of Γ, we find that

2Q(x, z, w) + 2Q(y, z, w) = 2Γ[ϕx(·, z, w)] + 2Γ[ϕy(·, z, w)](2.2)

= Γ[ϕy
x(·, z, w)] + Γ[ϕ−y

x (·, z, w)] + 2Γ[ϕy(·, z, w)].
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On the other hand, we have

Γ[ϕy
x(·, z, w)] + Γ[ϕ−y

x (·, z, w)] + 2Γ[ϕy(·, z, w)](2.3)

= Γ
[1

2
F(·+ x+ y, z, w) +

1

2
F(· − x+ y, z, w)−F(·+ y, z, w)

]

+ Γ
[1

2
F(·+ x− y, z, w) +

1

2
F(· − x− y, z, w)−F(· − y, z, w)

]

+ Γ[F(·+ y, z, w) + F(· − y, z, w)− 2F(·, z, w)]

= Γ[ϕx+y(·, z, w)] + Γ[ϕx−y(·, z, w)]

= Q(x+ y, z, w) +Q(x− y, z, w).

From (2.2) and (2.3) it follows that Q is quadratic in its first variable. Since Q

is tri-symmetric, Q is quadratic in its second and third variables and hence Q is

tri-quadratic. Moreover, if ImTF ⊂ A, then

Im
(1

2
TF(·, x, y, z)

)

⊂ Im
(1

2
TF

)

⊂
1

2
A.

In other words, 1
2TF(·, x, y, z) ∈ M(H,L(W)) for all (x, y, z) ∈ H3. Thus, prop-

erty (ii) of Γ implies

F(x, y, z)−Q(x, y, z) = Γ
[1

2
TF(·, x, y, z)

]

∈
1

2
A

for all (x, y, z) ∈ H3. Therefore, Im(F −Q) ⊂ 1
2A. �

Definition 2.5. Let (H3, ̺) be a metric group and W a normed space. A

function mF : R
+ → R

+ is a module of continuity of F : H3 → W if ̺((x, y, z),

(u, v, w)) 6 δ implies ‖F(x, y, z) − F(u, v, w)‖ 6 mF (δ) for every δ > 0 and

(x, y, z), (u, v, w) ∈ H3.

Definition 2.6. A function F : H3 → W is called a Lipschitz function of order

α > 0 if there exists a constant L > 0 such that

(2.4) ‖F(x, y, z)−F(u, v, w)‖ 6 L̺α((x, y, z), (u, v, w))

for every (x, y, z), (u, v, w) ∈ H3.

For a metric group (H3, ̺), a normed space W , and α ∈ (0, 1], let Lipα(H
3,W)

be the Lipschitz space consisting of all bounded Lipschitz functions of order α > 0

with the norm

‖F‖α := ‖F‖sup + Pα(F),
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where ‖·‖sup is the supremum norm and

Pα(F) = sup
{‖F(x, y, z)−F(u, v, w)‖

̺α((x, y, z), (u, v, w))
: (x, y, z), (u, v, w) ∈ H3,

(x, y, z) 6= (u, v, w)
}

.

Definition 2.7. Consider an abelian group (H3,+) with a metric ̺ invariant

under translation, i.e., satisfying the condition

̺((x+ a, y + b, z + c), (u+ a, v + b, w + c))

= ̺((a+ x, b+ y, c+ z), (a+ u, b+ v, c+ w)) = ̺((x, y, z), (u, v, w))

for all (a, b, c), (x, y, z), (u, v, w) ∈ H3. A metric D on H3 ×H is called a metric pair

if it is invariant under translation and the following condition holds:

D((x, y, z, a), (u, v, w, a)) = D((a, x, y, z), (a, u, v, w)) = ̺((x, y, z), (u, v, w))

for all a ∈ H, (x, y, z), (u, v, w) ∈ H3.

Theorem 2.8. Let (H3,+, ̺,D) be a metric pair, W a normed space such

that M(H, CB(W)) admits TSLIM, and F : H3 → W a function. If TF ∈

Lipα(H×H3,W), then there exists a tri-quadratic function Q such that

‖F −Q‖α 6
1

2
‖TF‖α.

P r o o f. Assume that mTF : R
+ → R

+ is the module of continuity of TF with

the metric pair D. Define the set-valued function ∆: H3 ×H3 → CB(W) by

∆((x, y, z), (u, v, w)) := inf
̺((x,y,z),(u,v,w))6δ

mTF(δ)B(0, 1),

where B(0, 1) is the closed unit ball with center at zero. The following inequality

shows that TF(t, ·, ·, ·) is ∆-Lipschitz:

‖TF(t, x, y, z)− TF(t, u, v, w)‖ 6 inf
D((t,x,y,z),(t,u,v,w))6δ

mTF (δ)

= inf
̺((x,y,z),(u,v,w))6δ

mTF(δ)

for all t ∈ H, (x, y, z), (u, v, w) ∈ H3. Thus, there exists a tri-quadratic function Q

such that F −Q is 1
2∆-Lipschitz by Theorem 2.4. Hence,

‖(F −Q)(x, y, z)− (F −Q)(u, v, w)‖ 6 inf
̺((x,y,z),(u,v,w))6δ

1

2
mTF (δ),
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which entails that mF−Q = 1
2mTF . Moreover, ‖TF‖sup < ∞ and clearly ImTF ⊂

‖TF‖supB(0, 1). Using the last part of Theorem 2.4 we get

(2.5) ‖F −Q‖sup 6
1

2
‖TF‖sup.

Define the function ω : R
+ → R

+ by ω(t) := Pα(TF)tα. In view of TF ∈

Lipα(H×H3,W), we have

‖TF(t, x, y, z)− TF(t, u, v, w)‖ 6 ω(D((t, x, y, z), (t, u, v, w)),

which ensures that ω is the module of continuity of the function TF and consequently

mF−Q = 1
2ω. Then,

‖(F −Q)(x, y, z)− (F −Q)(u, v, w)‖ 6
1

2
ω(̺((x, y, z), (u, v, w)))

=
1

2
Pα(TF)̺α((x, y, z), (u, v, w)).

This inequality implies that F−Q is a Lipschitz function of order α and Pα(F−Q) 6
1
2Pα(TF). From inequality (2.5) it follows that

‖F −Q‖α = ‖F −Q‖sup + Pα(F −Q)

6
1

2
‖TF‖sup +

1

2
Pα(TF) =

1

2
‖TF‖α.
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