Previous |  Up |  Next

Article

Keywords:
Vandermonde determinant; symmetric function; classical root system
Summary:
By introducing polynomials in matrix entries, six determinants are evaluated which may be considered extensions of Vandermonde-like determinants related to the classical root systems.
References:
[1] Bhatnagar, G.: A short proof of an identity of Sylvester. Int. J. Math. Math. Sci. 22 (1999), 431-435. DOI 10.1155/S0161171299224313 | MR 1695300 | Zbl 0929.01019
[2] Chu, W.: Divided differences and symmetric functions. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 2 (1999), 609-618. MR 1719558 | Zbl 0935.05088
[3] Chu, W.: Determinants and algebraic identities associated with the root systems of classical Lie algebras. Commun. Algebra 42 (2014), 3619-3633. DOI 10.1080/00927872.2013.790394 | MR 3196066 | Zbl 1291.05208
[4] Chu, W., Claudio, L. V. Di: The Vandermonde determinant and generalizations associated with the classical Lie algebras. Ital. J. Pure Appl. Math. 20 (2006), 139-158 Italian. MR 2247418 | Zbl 1150.15005
[5] Dyson, F. J.: Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3 (1962), 140-156. DOI 10.1063/1.1703773 | MR 0143556 | Zbl 0105.41604
[6] Fulton, W., Harris, J.: Representation Theory. Graduate Texts in Mathematics 129, Springer, New York (1991). DOI 10.1007/978-1-4612-0979-9 | MR 1153249 | Zbl 0744.22001
[7] Good, I. J.: Short proof of a conjecture by Dyson. J. Math. Phys. 11 (1970), 1884. DOI 10.1063/1.1665339 | MR 0258644
[8] Gross, K. I., Richards, D. St. P.: Constant term identities and hypergeometric functions on spaces of Hermitian matrices. J. Stat. Plann. Inference 34 (1993), 151-158. DOI 10.1016/0378-3758(93)90040-D | MR 1209996 | Zbl 0767.33010
[9] Macdonald, I. G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs, Clarendon Press, Oxford (1979). MR 0553598 | Zbl 0487.20007
Partner of
EuDML logo