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Abstract. By introducing polynomials in matrix entries, six determinants are evaluated
which may be considered extensions of Vandermonde-like determinants related to the clas-
sical root systems.
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1. Introduction and preliminaries

The Vandermonde determinant

(1) det
06i,j6n

[xj
i ] =

∏

06i<j6n

(xj − xi)

is well-known for its wide applications in mathematics, in particular, to symmetric

functions [1], [2], [9] and constant term identities [5], [7], [8]. It can be derived from

the denominator formula associated with the root system of the classical Lie alge-

bra An. For the other three classical root systems Bn, Cn and Dn, the corresponding

determinant identities (see [4] and [6], Exercises A52, A62 and A66 for example) may

be reproduced as

det
16i,j6n

[xj−1

i + x
1−j
i ] = 2V (X),(2)

det
16i,j6n

[xj
i − x

−j
i ] = V (X)

n
∏

k=1

x2
k − 1

xk
,(3)

det
16i,j6n

[x
j−1/2
i + x

1/2−j
i ] = V (X)

n
∏

k=1

xk + 1

x
1/2
k

,(4)
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where for the sake of brevity, we have adopted the notation

V (X) :=
∏

16i<j6n

(xi − xj)(1 − xixj)

xixj
=

∏

16i<j6n

(xi − xj)(1− xixj)
/

n
∏

k=1

xn−1

k .

By introducing polynomials in the matrix entries, the author in [3] has recently ex-

tended the three determinants in (2), (3) and (4). This paper investigates further

these determinants with the entries involving polynomials. Two classes of determi-

nant identities will be presented in the rest of the paper.

2. The first class of determinant identities

For the indeterminates {yk}k>1, define a polynomial sequence by

Pm(x) :=
m
∏

k=1

(1 − xyk) =
m
∑

k=0

(−x)kσk(y|[1,m])

where σk(y|[m,n]) stands for the kth elementary symmetric function in {yi}
n
i=m.

This section will present three determinant identities, which contain those dis-

played in (2), (3) and (4) as particular cases when all the polynomials Pm(x) are

identically equal to one (i.e., yk = 0 for k = 1, 2, . . .).

Theorem 1 (Determinant identity).

det
16i,j6n

[xj−1

i P2j−2(x
−1

i ) + x
1−j
i P2j−2(xi)] = 2V (X)

n−1
∏

k=1

{

1 +

2k
∏

i=1

yi

}

.

P r o o f. Due to the expression

x
j−1

i P2j−2(x
−1

i ) =

j
∑

k=2−j

(−1)j−kxk−1

i σj−k(y|[1, 2j − 2])

we can reformulate the matrix entries as

x
j−1

i P2j−2(x
−1

i ) + x
1−j
i P2j−2(xi)

=

j
∑

k=2−j

(−1)j−k
{

xk−1

i + x1−k
i }σj−k(y|[1, 2j − 2])

=

j
∑

k=1

(−1)j−k x
k−1

i + x1−k
i

1 + χ{k=1}
{σj−k(y|[1, 2j − 2]) + σj+k−2(y|[1, 2j − 2])}
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where we have splitted the bilateral sum
j
∑

k=2−j

into
j
∑

k=1

and
0
∑

k=2−j

and then inverted

the summation index k → 2− k for the second sum.

Then the determinant in question becomes the product

det
16i,k6n

[xk−1

i + x1−k
i

1 + χ{k=1}

]

× det
16k,j6n

[(−1)j−k{σj−k(y|[1, 2j− 2])+σj+k−2(y|[1, 2j− 2])}]

where the second matrix is upper triangular with the jth diagonal entry equal to
(

1 +
2j−2
∏

i=1

yi

)

. Evaluating the first determinant by (2), we prove the theorem. �

Theorem 2 (Determinant identity).

det
16i,j6n

[xj
iP2j(x

−1

i )− x
−j
i P2j(xi)] = V (X)

n
∏

k=1

x2
k − 1

xk

{

1−

2k
∏

i=1

yi

}

.

P r o o f. Analogously, we have the expression

x
j
iP2j(x

−1

i ) =

j
∑

k=−j

(−1)j−kxk
i σj−k(y|[1, 2j])

from which we can reformulate the matrix entries as

x
j
iP2j(x

−1

i )− x
−j
i P2j(xi) =

j
∑

k=−j

(−1)j−k(xk
i − x−k

i )σj−k(y|[1, 2j])

=

j
∑

k=1

(−1)j−k(xk
i − x−k

i )
{

σj−k(y|[1, 2j])− σj+k(y|[1, 2j])}

where we have splitted the bilateral sum
j
∑

k=−j

into
j
∑

k=1

and
1
∑

k=−j

and then inverted

the summation index k → −k for the second sum.

Then the determinant in question can be factorized into

det
16i,k6n

[xk
i − x−k

i ]× det
16k,j6n

[(−1)j−k{σj−k(y|[1, 2j])− σj+k(y|[1, 2j])}]

where the second matrix is upper triangular with the jth diagonal entry equal to
(

1 +
2j
∏

i=1

yi

)

. Evaluating the first determinant by (3), we prove the theorem. �
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Theorem 3 (Determinant identity).

det
16i,j6n

[x
j−1/2
i P2j−1(x

−1

i ) + x
1/2−j
i P2j−1(xi)] = V (X)

n
∏

k=1

xk + 1

x
1/2
k

{

1−

2k−1
∏

i=1

yi

}

.

P r o o f. Writing similarly the expression

x
j−1/2
i P2j−1(x

−1

i ) =

j
∑

k=1−j

(−1)j−kx
k−1/2
i σj−k(y|[1, 2j − 1])

we can restate the matrix entries as

x
j−1/2
i P2j−1(x

−1

i ) + x
1/2−j
i P2j−1(xi)

=

j
∑

k=1−j

(−1)j−k(x
k−1/2
i + x

1/2−k
i )σj−k(y|[1, 2j − 1])

=

j
∑

k=1

(−1)j−k(x
k−1/2
i + x

1/2−k
i ){σj−k(y|[1, 2j − 1])− σj+k−1(y|[1, 2j − 1])}

where we have splitted the bilateral sum
j
∑

k=1−j

into
j
∑

k=1

and
0
∑

k=1−j

and then inverted

the summation index k → 1− k for the second sum.

Therefore the determinant in question admits the decomposition

det
16i,k6n

[x
k−1/2
i −x

1/2−k
i ]× det

16k,j6n
[(−1)j−k{σj−k(y|[1, 2j−1])−σj+k−1(y|[1, 2j−1])}]

where the second matrix is upper triangular with the jth diagonal entry equal to
(

1−
2j−1
∏

i=1

yi

)

. Evaluating the first determinant by (4), we prove the theorem. �

3. The second class of determinant identities

In a recent paper, the author in [3] extended (2), (3) and (4), respectively, to the

following three determinant identities.

Lemma 4 (Chu [3], Theorem 25: m < n).

det
16i,j6n

[xj−1

i Pm(x−1

i ) + x
1−j
i Pm(xi)] = 2V (X)

∏

16ı66m

(1− yıy).
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Lemma 5 (Chu [3], Theorem 19: m 6 n+ 1).

det
16i,j6n

[xj
iPm(x−1

i )− x
−j
i Pm(xi)] = V (X)

n
∏

k=1

x2
k − 1

xk

∏

16ı<6m

(1− yıy).

Lemma 6 (Chu [3], Theorem 22: m 6 n).

det
16i,j6n

[x
j−1/2
i Pm(x−1

i ) + x
1/2−j
i Pm(xi)]

= V (X)

n
∏

k=1

xk + 1

x
1/2
k

∏

16ı<6m

(1− yıy)

m
∏

κ=1

(1− yκ).

It should be pointed out that Theorem 16 in [3] is, in fact, the limiting case

ym → ∞ of Lemma 5 (Theorem 19 in the same paper). The last three determinants

will be generalized further in this section by increasing polynomial degrees.

Theorem 7 (Determinant identity: m < n).

det
16i,j6n

[xj−1

i Pm+j−1(x
−1

i ) + x
1−j
i Pm+j−1(xi)] = 2V (X)

∏

16ı66m

(1− yıy).

P r o o f. Using the expression

x
j−1

i Pm+j−1(x
−1

i ) =

j
∑

k=1

(−1)j−kxk−1

i σj−k(y|[m+ 1,m+ j − 1])Pm(x−1

i )

we can reformulate the matrix entries as

x
j−1

i Pm+j−1(x
−1

i ) + x
1−j
i Pm+j−1(xi)

=

j
∑

k=1

(−1)j−kσj−k(y|[m+ 1,m+ j − 1]){xk−1

i Pm(x−1

i ) + x1−k
i Pm(xi)}.

Then the determinant in question becomes the product

det
16i,k6n

[xk−1

i Pm(x−1

i ) + x1−k
i Pm(xi)]× det

16k,j6n
[(−1)j−kσj−k(y|[m+ 1,m+ j − 1])]

where the second matrix is upper triangular with the diagonal entries equal to one.

Evaluating the first determinant by Lemma 4, we prove the theorem. �
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Theorem 8 (Determinant identity: m 6 n+ 1).

det
16i,j6n

[xj
iPm+j−1(x

−1

i )− x
−j
i Pm+j−1(xi)] = V (X)

∏

16ı<6m

(1 − yıy)
n
∏

k=1

x2
k − 1

xk
.

P r o o f. Analogously, we have the expression

x
j
iPm+j−1(x

−1

i )− x
−j
i Pm+j−1(xi)

=

j
∑

k=1

(−1)j−kσj−k(y|[m+ 1,m+ j − 1]){xk
i Pm(x−1

i )− x−k
i Pm(xi)}

which enables us to factorize the determinant in question into

det
16i,k6n

[xk
i Pm(x−1

i )− x−k
i Pm(xi)]× det

16k,j6n
[(−1)j−kσj−k(y|[m+ 1,m+ j − 1])].

Then the determinant identity displayed in the theorem follows from Lemma 5. �

Theorem 9 (Determinant identity: m 6 n).

det
16i,j6n

[x
j−1/2
i Pm+j−1(x

−1

i ) + x
1/2−j
i Pm+j−1(xi)]

=: V (X)
∏

16ı<6m

(1− yıy)
m
∏

κ=1

(1− yκ)
n
∏

k=1

xk + 1

x
1/2
k

.

P r o o f. Writing similarly the matrix entries as

x
j−1/2
i Pm+j−1(x

−1

i ) + x
1/2−j
i Pm+j−1(xi)

=

j
∑

k=1

(−1)j−kσj−k(y|[m+ 1,m+ j − 1]){x
k−1/2
i Pm(x−1

i ) + x
1/2−k
i Pm(xi)}

which leads the determinant in question to the decomposition

det
16i,k6n

[x
k−1/2
i Pm(x−1

i )+x
1/2−k
i Pm(xi)]× det

16k,j6n
[(−1)j−kσj−k(y|[m+1,m+j−1])].

Recalling Lemma 6, we get the determinant identity in the theorem. �

It is clear that when yk = 0 for k > m, the determinant identities displayed

in the last three theorems reduce respectively to those in Lemmas 4–6. Instead,

specifying y1 = y2 = . . . = ym = 0 in the last theorems, we deduce the following

three interesting determinant identities, which can also serve as extensions of (2),

(3) and (4), resembling those displayed in Theorems 1–3.
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Corollary 10 (Determinant identity).

det
16i,j6n

[xj−1

i Pj−1(x
−1

i ) + x
1−j
i Pj−1(xi)] = 2V (X).

Corollary 11 (Determinant identity).

det
16i,j6n

[xj
iPj−1(x

−1

i )− x
−j
i Pj−1(xi)] = V (X)

n
∏

k=1

x2
k − 1

xk
.

Corollary 12 (Determinant identity).

det
16i,j6n

[x
j−1/2
i Pj−1(x

−1

i ) + x
1/2−j
i Pj−1(xi)] = V (X)

n
∏

k=1

xk + 1

x
1/2
k

.
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