[1] Ali, R., Recht, B.: Random features for large-scale kernel machines. In: Advances in Neural Information Processing System, MIT Press, Massachusetts 2008, pp. 1177-1184.
[2] Bernhard, S., Smola, A. J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Massachusetts 2002.
[3] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.:
Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3 (2011), 1-122.
DOI 10.1561/2200000016
[4] Chang, C. C., Lin, C. J.:
LIBSVM: a library for support vector machines. JACM Trans. Intell. Systems Technol. 2 (2011), 1-27.
DOI 10.1145/1961189.1961199
[6] Chapelle, O., Zien, A: Semi-supervised classification by low density separation. In: Proc. International Conference on Artificial Intelligence and Statistics, Barbados 2005.
[7] Cortes, C., Vapnik, V.:
Support-vector networks. Machine Learning 20 (1995), 273-297.
DOI 10.1007/bf00994018
[8] Drineas, P., Mahoney, M. W.:
On the Nyström method for approximating a Gram matrix for improved kernel-based learning. J. Machine Learning Research 6 (2005), 2153-2175.
MR 2249884
[9] Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo Park 1996.
[10] Flouri, K., Beferull-Lozano, B., Tsakalides, P.:
Distributed consensus algorithms for SVM training in wireless sensor networks. In: 16th European Signal Processing Conference, Lausanne 2008.
DOI 10.1109/icdsp.2009.5201180
[11] Forero, P A., Cano, A., Giannakis, G. B.:
Consensus-based distributed support vector machines. J. Machine Learning Research 11 (2010), 1663-1707.
MR 2653352
[12] Franc, V., Sonnenburg, S.:
Optimized cutting plane algorithm for support vector machines. In: Proc. 25th International Conference on Machine Learning, Helsinki 2008.
DOI 10.1145/1390156.1390197 |
MR 2563979
[13] Hu, J.:
On robust consensus of multi-agent systems with communication delays. Kybernetika 45 (2009), 768-784.
MR 2599111 |
Zbl 1190.93003
[14] Joachims, T., Finley, T., Yu, C. J.:
Cutting-plane training of structural SVMs. Machine Learning 77 (2009), 27-59.
DOI 10.1007/s10994-009-5108-8
[15] Lee, S., Wright, S. J.:
Approximate Stochastic Sub-gradient Estimation Training for Support Vector Machines. In: Mathematical Methodologies in Pattern Recognition and Machine Learning, Springer, New York 2011, pp. 67-82.
DOI 10.1007/978-1-4614-5076-4_5
[17] Lu, Y., Roychowdhury, V., Vandenberghe, L.:
Distributed parallel support vector machines in strongly connected networks. IEEE Trans. Neural Networks 19 (2008), 1167-1178.
DOI 10.1109/tnn.2007.2000061
[18] Kim, W., Park, J., Yoo, J., Kim, H. J., Park, C. G.:
Target localization using ensemble support vector regression in wireless sensor networks. IEEE Trans. Cybernetics 43 (2013), 1189-1198.
DOI 10.1109/tsmcb.2012.2226151
[19] Kim, W., Stanković, M. S., Johansson, K. H., Kim, H.J.:
A distributed support vector machine learning over wireless sensor networks. IEEE Trans. Neural Cybernetics 45 (2015), 2599–2611.
DOI 10.1109/TCYB.2014.2377123
[21] Platt, J. C.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods, MIT Press, Massachusetts 1999, pp. 185-208.
[22] Polyak, B. T.:
Introduction to Optimization. Springer, New York 1987.
MR 1099605
[23] Rifkin, R., Klautau, A.:
In defense of one-vs-all classification. J. Machine Learning Research 5 (2004), 101-141.
MR 2247975
[24] Scardapane, S., Fierimonte, R., Lorenzo, P. D., Panella, M., Uncini, A.:
Distributed semi-supervised support vector machines. Neural Networks 80 (2016), 43-52.
DOI 10.1016/j.neunet.2016.04.007
[25] Shalev-Shwartz, S., Singer, Y., Srebro, N.:
Pegasos: Primal estimated sub-gradient solver for svm. In: Proc. 24th International Conference on Machine Learning, Oregon 2007.
DOI 10.1145/1273496.1273598
[26] Sra, S., Nowozin, S., Wright, S. J.: Optimization for Machine Learning. MIT Press, Massachusetts 2012.
[28] Weston, J., Watkins, C.: Support vector machines for multi-class pattern recognition. ESANN 99 (1999), 219-224.
[29] Yi, P., Hong, Y.:
Stochastic sub-gradient algorithm for distributed optimization with random sleep scheme. Control Theory Technol. 13 (2015), 333-347.
DOI 10.1007/s11768-015-5100-8 |
MR 3435158
[30] Yuan, D., Ho, D. W. C., Hong, Y.:
On Convergence rate of distributed stochastic gradient algorithm for convex optimization with inequality constraints. SIAM J. Control Optim. 54 (2016), 2872-2892.
DOI 10.1137/15m1048896 |
MR 3561770